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Abstract

Multisite research designs involving cluster randomization are becoming increasingly
important in educational and behavioral research. Researchers would like to compute
effect-size indices based on the standardized mean difference to compare the results of
cluster randomized studies (and corresponding quasi-experiments) with other studies and
to combine information across studies in meta-analyses. This working paper addresses
the problem of defining effect sizes in multilevel designs—and computing estimates of
those effect sizes and their standard errors—from information that is likely to be reported
in journal articles. Three effect sizes are defined corresponding to different
standardizations. Estimators of each effect size index are also presented along with their
sampling distributions (including standard errors).
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Effect Sizes in Cluster Randomized Designs 

 Multi-site studies are frequently used to evaluate the effects of educational 

treatments (for example, interventions, products or technologies).  One common design 

assigns entire sites (often schools) to the same treatment group, with different sites 

assigned to different treatments.  This design is often called a cluster randomized design 

because sites such as schools correspond to statistical clusters.  Several analysis strategies 

for cluster randomized trials are possible.  The simplest is to treat the clusters as units of 

analysis, that is, to compute mean scores on the outcome (and all other variables that may 

be involved in the analysis) and carry out the statistical analysis as if the site (cluster) 

means were the data.  A more sophisticated alternative is to use a hierarchical linear 

modeling scheme with clusters as one level in the model (see, e.g., Raudenbush and Bryk, 

2002).  Many authors have commented on the problems of analyses of cluster-

randomized trials (e.g., Raudenbush and Bryk, 2002; Donner and Klar, 2000; Klar and 

Donner, 2001; Murray, Varnell, and Blitstein, 2004).   

Problems of representation of the results of cluster randomized trials (and the 

corresponding quasi-experiments) in the form of effect sizes and combining them across 

studies in meta-analyses have received less attention.  The problem of meta-analysis of 

cluster randomized trials was considered by Rooney and Murray (1996), who called 

attention to the problem of effect size estimation in cluster randomized trials and 

suggested that conventional estimates were not appropriate and their standard errors were 

incorrect.  Donner and Klar (2002) suggested that corrections for the effects of clustering 

should be introduced in meta-analyses of cluster randomized experiments.  Laopaiboon 

(2003) reviewed the methods used in 25 published meta-analyses involving cluster 
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randomized experiments, and found that only 3 used methods to account for clustering in 

their analysis.  All of these three were meta-analyses of health care studies using binary 

outcomes.  Of the six meta-analyses involving education, none used methods that 

addressed the impact of clustering. 

This work was stimulated by problems faced by the US Department of 

Education’s What Works Clearinghouse, whose mission is to evaluate, compare, and 

synthesize evidence of effectiveness of educational programs, products, practices, and 

policies.  The What Works Clearinghouse reviewers found that the majority of the high 

quality studies they were examining involved assignment of treatment by clusters, which 

needed to be taken into account in computing an estimate of effect size and its 

uncertainty.  This paper has two purposes.  One is to examine the problem of defining 

effect sizes for cluster randomized trials. The second is to examine how to estimate these 

effect sizes and obtain standard errors for them from statistics that are typically given in 

reports of research (that is, without a reanalysis of the raw data)..   

Model and Notation 

Let Yij
T (i = 1, …, mT; j = 1, …, ni

T) and Yij
C (i = 1, …, mC; j = 1, …, ni

C) be the jth 

observation in the ith cluster in the treatment and control groups respectively, so that there 

are mT clusters in the treatment group and mC clusters in the control group, and a total of 

M = mT + mC clusters with n observations each.  Thus the sample size is  

  
1

TmT T
i

i
N n

=
= ∑

in the treatment group, 
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1

CmC C
i

i
N n

=
= ∑

in the control group, and the total sample size is N = NT + NC. 

 Let T
iY • (i = 1, …, mT) and C

iY • (i = 1, …, mC) be the means of the ith cluster in the 

treatment and control groups, respectively, and let TY•• and CY••  be the overall (grand) 

means in the treatment and control groups, respectively.  Define the (pooled) within-

cluster sample variance SW
2 via 

2 2

1 1 1 12
( ) (

T CT C
i in nm mT T C C

ij i ij i
i j i j

W

Y Y Y Y
S

N M

• •
= = = =

− + −

=
−

∑ ∑ ∑ ∑ )
 

and the total pooled within-treatment group variance ST
2 via 

2 2

1 1 1 12
2

T CT C
i in nm mT T C C

ij ij
i j i j

T

(Y Y ) (Y Y )
S

N

•• ••
= = = =

− + −

=
−

∑ ∑ ∑ ∑
. 

 Let SB be the pooled within treatment-groups standard deviation of the cluster 

means given by 

 

2 2

2 1 1

2

T Cm m
T T C C

i i
i i

B T C

(Y Y ) (Y Y )
S

m m

• ∗• • ∗•
= =

− + −
=

+ −

∑ ∑
, 

where TY∗• is the (unweighted) mean of the mT cluster means in the treatment group, 

and CY∗• is the (unweighted) mean of the mC cluster means in the control group.  That is, 

 
1

1
TmT T

* iT
i

Y Y
m

• •
=

= ∑  

and 
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1

1
CmC C

* iC
i

Y Y
m

• •
=

= ∑ . 

 

Note that when cluster sample sizes are unequal, TY∗•  need not equal TY•• , the grand mean 

of the treatment group and CY∗•  need not equal CY•• , the grand mean of the control group.  

However, when cluster sample sizes are all equal TY∗•  = TY•• and CY∗• = CY•• .  

Suppose that observations within the treatment and control group clusters are 

normally distributed about cluster means µi
T and µi

C with a common within-cluster 

variance σW
2. That is 

2( , )T T
ij i WY N µ σ∼ , i =1, …, mT; j = 1, …, ni

T

and 

  i =1, …, m2( ,C C
ij i WY N µ σ∼ )

)B

)B

C; j = 1, …, ni
C. 

Suppose further that the clusters are random effects (for example they are considered a 

sample from a population of clusters) so that the cluster means themselves have a normal 

sampling distribution with means µ●T and µ●C and common variance σB
2.  That is  

2( ,T T
iµ N µ σ•∼ , i = 1, …, mT

and 

2( ,C C
iµ N µ σ•∼ , i = 1, …, mC. 

Note that in this formulation, σB
2 represents true variation of the population means of 

clusters over and above the variation in sample means that would be expected from 

variation in the sampling of observations into clusters.   
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These assumptions correspond to the usual assumptions that would be made in the 

analysis of a multi-site trial by a hierarchical linear models analysis, an analysis of 

variance (with treatment as a fixed effect and cluster as a nested random effect), or a t-

test using the cluster means in treatment and control group as the unit of analysis. 

 In principle there are three different within-treatment group standard deviations, 

σB, σW, and σT, the latter defined by 

 2 2 2
T B Wσ σ σ= + . 

In most educational data when clusters are schools, σB
2 is considerably smaller than σW

2. 

Obviously, if the between cluster variance σB
2 is small, then σT

2 will be very similar to 

σW
2.   

 A parameter that summarizes the relationship between the three variances is 

called the intraclass correlation ρ, which is defined by 

 
2 2

2 2
B

B W T
ρ 2

Bσ σ
σ σ σ

= =
+

.        (1) 

The intraclass correlation ρ can be used to obtain one of these variances from any of the 

others, since σW
2 = (1 – ρ)σB

2/ρ, σW
2 = (1 – ρ)σT

2, and σB
2 = ρσT

2. 

Effect Sizes 

The effect sizes typically used in educational and psychological research are 

standardized mean differences, defined as the ratio of a difference between treatment and 

control group means to a standard deviation.  In single site designs or designs where there 

is no statistical clustering, the notion of standardized mean difference is often 

unambiguous: There is only one possibility.  In multi-site designs such as cluster 
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randomized trials, there are several possible standardized mean differences.  In this 

section we clarify the possibilities. 

The three possibilities for the standard deviation lead to different possible 

definitions for the population effect size in this clustered design.  The choice of one of 

these effect sizes should be determined on the basis of the inference of interest to the 

researcher.  If the effect size measures are to be used in meta-analysis, an important 

inference goal may be to estimate parameters that are comparable with those that can be 

estimated in other studies.  In such cases, the standard deviation may be chosen to be the 

same kind of standard deviation used in the effect sizes of other studies to which this 

study will be compared.  We focus on three effect sizes that seem likely to be the most 

useful (meaning the most widely used). 

 If σW ≠ 0 (and hence ρ ≠ 1), one effect size parameter has the form 

 
T C

W
W

µ µ
δ

σ
• •−

= .        (2) 

This effect size might be of interest, for example, in a meta-analysis where the other 

studies to which the current study is compared are typically single site studies.  In such 

studies δW may (implicitly) be the effect size estimated and hence δW an might be the 

effect size most comparable with that in other studies. 

 A second effect size parameter is of the form 

 
T C

T
T

µ µ
δ

σ
• •−

= .        (3) 

This effect size might be of interest in a meta-analysis where the other studies are multi-

site studies or studies that sample from a broader population but do not include clusters in 

the sampling design (this would typically imply that they used an individual, rather than a 
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cluster, assignment strategy).  In such cases, δT might be the most comparable with the 

effect sizes in other studies. 

 If  σB ≠ 0 (and hence ρ ≠ 0), a third possible effect size parameter would be 

 
T C

B
B

µ µ
δ

σ
• •−

= .        (4) 

This effect size is less likely to be of general interest, but it might be of interest in cases 

where the treatment effect is defined at the level of clusters and the individual 

observations are of interest because the average defines an aggregate property.  The effect 

size δB may also be of interest in a meta-analysis where the studies being compared are 

typically multi-site studies that have been analyzed by using cluster means as the unit of 

analysis.  

Note, however, that although δW and δT will often be similar in magnitude, δB will 

typically be much larger (in the same population) than either δW or δT, because σB is 

typically considerably smaller than σW and σT.  Note also that if all of the effect sizes are 

defined (that is, if 0 < ρ < 1), and ρ is known, any one of these effect sizes may be 

obtained from any of the others.  In particular, both δW and δT can be obtained from δB 

and ρ since  

 1 1
ρ T

W B ρ
δ

δ δ
ρ−

= =
−

       (5) 

and  

 1T B Wδ δ ρ δ= = − ρ .       (6) 

Estimates of Effect Sizes: Equal Cluster Sample Sizes 
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 While it is easy to define different effect sizes in multi-level (e.g., clustered) 

designs, the nested variance structure makes estimation somewhat less intuitive than in 

single level designs. In this section we present estimates of the effect sizes and their 

approximate sampling distributions when the cluster sample sizes are equal to n, that is 

when ni
T = n, i = 1, …, mT and ni

C = n, i = 1, …, mC.  In this case NT = nmT , NC = nmC , 

and N = NT + NC = n(mT + mC) = nM.  Derivations and the details of the small sample 

distribution of the effect size estimators are given in the Appendix. 

We present results explicitly for the case of equal cluster sample sizes for two 

reasons.  The first reason is that most designs attempt to achieve equal cluster sample 

sizes but specific (realized) cluster sample sizes are rarely reported, so that the equal 

sample size formulas will be of most practical use.  The second reason is that the results 

become considerably more complicated when cluster sample sizes are unequal—

sufficiently complicated that it is difficult to obtain much insight from examining the 

formulas in the unequal cluster sample size case.  

Estimation of δW 

We start with estimation of δW, which is the most straightforward.  If ρ ≠ 1, the 

estimate 

 
T C

W
W

Y Y
d

S
•• ••−

=         (7) 

is a consistent estimator of δW.  The estimator dW is approximately normally distributed 

about δW with variance 

 
21 ( 1){ }

1 2(

⎛ ⎞⎛ ⎞+ + −
= ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

T C
W

W T C
δN N n ρV d

)
+

−ρ N MN N
.    (8) 
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An estimate vW of the variance of dW can be computed by substituting the consistent 

estimate dW for δW in equation (8) above.  Note that the presence of the factor (1 – ρ) in 

the denominator of the first term is possible since δW is defined only if ρ ≠ 1. 

 Note that if ρ = 0 and there is no clustering, equation (8) reduces to the variance 

of a mean difference divided by a standard deviation with (N – M) degrees of freedom 

(see, Hedges, 1981).  The leading term of the variance in equation (8) arises from 

uncertainty in the mean difference.  Note that it is [1 + (n - 1)ρ]/(1 – ρ)] as large as would 

be expected if there were no clustering in the sample (that is if ρ = 0).  Thus  

[1 + (n - 1)ρ]/(1 – ρ)] is a kind of variance inflation factor for the variance of the effect 

size estimate dW. 

Estimation of δB 

Estimation of the other δB and δT is less intuitive than that of δW.  For example, 

one might expect that  

 
T C

B

Y Y
S

•• ••− , 

would be that natural estimator of δB, but this is not the case.  The reason is that SB is not 

a pure estimate of σB, since it is inflated by the within-cluster variability.  In particular, 

the expected value of SB
2 is 

 
2

2 W
B n

σσ + . 

 If an estimate SW
2 of the (average) within-cluster variance is reported, then it is 

possible to obtain an estimate 2ˆBσ  of σB
2 by subtraction, namely 

 
2

2 2ˆ W
B B

SS
n

σ = −   , 
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whenever this quantity is nonnegative and zero otherwise.  Whenever 2ˆBσ  is nonzero, one 

estimate of δB is therefore 

 1 ˆ

T C
B

B

Y Yd •• ••−
=

σ
.        (9) 

Whenever δB is defined (that is, when ρ ≠ 0) dB1 is normally distributed in large samples 

with variance 

    
2 2

2
1 2 2 2 2

1 ( 1) [1 ( 1) ] (1 ){ }
2( 2) 2 ( )

T C
B BT C

m m n ρ n ρ ρV d δ
nρm m M n ρ n N M ρ

⎛ ⎞ ⎡⎛ ⎞+ + − + − −
= + +⎜ ⎟

⎤
⎢ ⎥⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎣ ⎦

.    (10) 

An estimate vB1 of the variance of dB1 can be computed by substituting the consistent 

estimate dB1 for δB in equation (10) above.  The estimate dB1 has the virtue that it can be 

computed without an external estimate of ρ.  Note that the presence of ρ in the 

denominators of the variance terms is possible since δB is only defined if ρ ≠ 0. 

Alternatively, (again assuming that ρ ≠ 0 so that δB is defined), the intraclass 

correlation may be used to obtain an estimate of δB using SB.  A direct argument shows 

that  

 2
1 ( 1)T C

B
B

Y Y n ρd
S nρ

•• ••− + −
=        (11) 

is a consistent estimate of δB.  This estimate is normally distributed in large samples with 

variance  

 [ ] 2

2
1 ( 1){ }

2 ( 2)

T C
B

B T C
1+(n -1)ρ δm m n ρV d

nρ nρ Mm m

⎛ ⎞⎛ ⎞+ + −
= +⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

.   (12) 
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An estimate vB2 of the variance of dB2 can be computed by substituting the consistent 

estimate dB2 for δB in equation (12) above.  Note that the presence of ρ in the 

denominators of the variance terms is possible since δB is only defined if ρ ≠ 0. 

 The variance in equation (12) is [1 + (n - 1)ρ]/nρ] as large as the variance of the 

standardized mean difference computed from an analysis using cluster means as the unit 

of analysis, that is, applying the usual formula for the variance of the standardized 

difference between the means of the cluster means in the treatment and control group.  

Thus [1 + (n - 1)ρ]/nρ is a kind of variance inflation factor for the variance of effect size 

estimates like dB compared to this alternative effect size estimate.   

Estimation of δT

 An estimate of δT can also be obtained in either of two ways.  If the pooled 

within-treatment groups variance of the cluster means SB
2 and the pooled within-cluster 

variance SW
2 are both known, then an estimate of (σT) can be constructed as 

 2 21ˆT B
nS S

n
σ −⎛ ⎞= + ⎜ ⎟

⎝ ⎠
W . 

The estimator 

 1 ˆ

T C
T

T

Y Yd •• ••−
=

σ
        (13) 

is a consistent estimator of δT.  This estimate is normally distributed about δT in large 

samples with variance  

    ( )
2 2 2

2
1 2 2

[1 ( 1) ] ( 1) (1 ){ } 1 ( 1)
2 ( 2) 2 ( )

⎛ ⎞ ⎡+ + − −
= + − + +⎜ ⎟

⎤−
⎢ ⎥⎜ ⎟ − −⎢ ⎥⎝ ⎠ ⎣

T C
T TT C

N N n ρ n ρV d n
⎦

ρ δ
N N n M n N M

.  (14) 
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An estimate vT1 of the variance of dT1 can be computed by substituting the consistent 

estimate dT1 for δT in equation (14) above.  The estimate dT1 has the virtue that it can be 

computed without an external estimate of ρ. 

Alternatively, the intraclass correlation and ST may be used to obtain an estimate 

of δT.  A direct argument shows that a consistent estimator of δT is 

 2
2( 1)1

2

T C
T

T

Y Y nd
S N

•• ••⎛ ⎞− −
= −⎜ ⎟⎜ ⎟ −⎝ ⎠

ρ .      (15) 

It is normally distributed in large samples with variance 

   ( )
( ) ( ) ( )

2 2
2

2
( 2)(1 ( 2 ) 2( 2 ) (1 ){ } 1 ( 1)

2 2 2 2 1

⎛ ⎞⎛ ⎞+ − − + − + −
= + − + ⎜

−
⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤− − − −⎣ ⎦⎝ ⎠ ⎝ ⎠

V
T C

T TT C
N N N ρ) n N n ρ N n ρ ρd n ρ δ

N N nN N ρ
.   (16) 

An estimate vT2 of the variance of dT2 can be computed by substituting the consistent 

estimate dT2 for δT in equation (16) above.  Note that if ρ = 0 and there is no clustering, 

dT2 reduces to the conventional standardized mean difference and equation (16) reduces 

to the usual expression for the variance of the standardized mean difference (see Hedges, 

1981). 

 The leading term of the variance in equations (14) and (16) arise from uncertainty 

in the mean difference.  Note that this leading term is [1 + (n - 1)ρ] as large as would be 

expected if there were no clustering in the sample (that is if ρ = 0).  The expression 

[1 + (n - 1)ρ] is the variance inflation factor mentioned by Donner (1981) and the design 

effect mentioned by Kish (1965) for the variance of means in clustered samples and also 

corresponds to a variance inflation factor for the effect size estimates like dT1 and dT2. 

Confidence Intervals for δW, δB, and δT
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 The results in this paper can also be used to compute confidence intervals for 

effect sizes.  If δ is any one of the effect sizes mentioned, d is a corresponding estimate, 

and vd is the estimated variance of d, then a 100(1 – α) percent confidence interval for δ 

based on d and vd is given by 

 d – cα/2vd ≤ δ ≤ d + cα/2vd,       (17) 

where cα/2 is the 100(1 – α/2) percent point of the standard normal distribution (e.g., 1.96 

for α/2 = 0.05/2 = 0.025). 

Estimates of Effect Size: Unequal Cluster Sample Sizes 
 
 When cluster sample sizes are unequal, expressions for the effect size estimators 

and their variances are considerably more complex. In this section we give estimates of 

the effect sizes and their sampling distributions when cluster sample sizes are not equal.  

These expressions may be of use when cluster sample sizes are unequal and are reported 

explicitly.  They also give some insight about what single “compromise” sample size 

might give most accurate results (for example in computing the variances of estimates) 

when substituted into the equal sample size formulas. 

Estimation of δW  

When ρ ≠ 1, the estimator dW of δW is the same as in the case of equal cluster 

sample sizes, but the variance of the estimator is given by 

 { }
21 ( 1)

1 2(
⎛ ⎞⎛ ⎞+ + −

= ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

T C
W

W T C

N N nV d
N N N M

δρ
ρ )

+
−

,    (18) 

where 

 
( ) ( )2 2

1 1= == +
∑ ∑

T Cm m
C T T C

i i
i i

T C

N n N n
n

N N N N
.       
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When all of the ni
T and ni

C are equal to n, = n and (18) reduces to (8).  n

Estimation of δT

The form of the estimator dT2 is somewhat different when cluster sample sizes are 

unequal.  In this case the estimator becomes 

 2
( )1

2
•• ••⎛ ⎞ ⎛ ⎞− − + + −−

= −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

T T C C T CT C
U U U U

T
T

N n m n m n nY Yd
S N

ρ 2 ,  (19) 

where  

 
( ) ( )2 2

1

( 1)

Tm
T T

i
T i
U T T

N n
n

N m
=

−
=

−

∑
, 

and 

 
( ) ( )2 2

1

( 1)

Cm
C C

i
C i
U C C

N n
n

N m
=

−
=

−

∑
. 

When all of the ni
T and ni

C are equal to n, = = n and (19) reduces to (15). T
Un C

Un

The variance of dT2 is somewhat more complex.  It is given by 

   { } ( )
( )

( )

2 2

2

( 2)(1 ) 2 1
1 ( 1)

2 2 [( 2) ( 2 )]

2⎡ ⎤− − + + −⎛ ⎞+ ⎣ ⎦= + − +⎜ ⎟ − − − − −⎝ ⎠

T C

T T C

N A BN NV d n
N N N N N B

ρ ρ ρ ρ
ρ

ρ

δ
,   (20) 

where the auxiliary constants A and B are defined by A = AT + AC, 

 
( ) ( ) ( ) ( )

( )

2
2 2 2

1 1 1
2

2
= = =

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠=

∑ ∑ ∑
T T Tm m m

T T T T T
i i

i i iT

T

N n n N n
A

N

3

i

, 

 
( ) ( ) ( ) ( )

( )

2
2 2 2

1 1 1
2

2
= = =

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠=

∑ ∑ ∑
C C Cm m m

C C C C C
i i

i i iC

C

N n n N n
A

N

3

i

, 
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and 

 . ( 1) (= − +T T C C
U UB n m n m 1)−

When ni
T and ni

C are equal to n, A = n(N – 2n), = = n and B = (N – 2n) so that (20) 

reduces to (16).  These expressions suggest that if cluster sample sizes are unequal, 

substituting the average of and into (15) and (16) would give results that are quite 

close to the exact values. 

T
Un C

Un

T
Un C

Un

Estimation of δB

 There is more than one way to generalize the estimator dB2 to the case of unequal 

cluster sample sizes.  One possibility is to use the means of the cluster means in the 

treatment and control group in the numerator and standard deviation of the cluster means 

in the denominator.  This corresponds to using the cluster means as the unit of analysis.  

Another possibility for the numerator is to use the grand means in the treatment and 

control groups.  Similarly, there are multiple possibilities for the denominator, such as 

some function of the mean square between groups.  When cluster sample sizes are 

identical, then all of these approaches are equivalent in the sense that the effect size 

estimates are identical.  When the cluster sample sizes are not identical, the resulting 

estimators are not the same.  Because the use of cluster means as the unit of analysis is a 

common approach, we believe that the means and standard deviations of cluster means 

are most likely to be available and hence we give the sampling distribution of the effect 

size estimate based on the standard deviation of the cluster means. 

When ρ ≠ 0, an estimator of δB which is a generalization of (11) is given by 

 1 1T C
B

B
B B

Y Y ( n )ρd
S n ρ

•• ••⎛ ⎞− + −
= ⎜ ⎟
⎝ ⎠

,      (21) 
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where  

 
1

1 1
2

T T C C
I I

B
( m )n ( m )nn

M

−
⎛ ⎞− + −

= ⎜ ⎟−⎝ ⎠
, 

 ∑
Tm

T T
I iT

i=1

1n = (1/n )
m

, 

and 

 ∑
Cm

C C
I iC

i=1

1n = (1/n )
m

. 

The variance of dB is approximately  

 { }
2

2

1 1
2 2 1 1

T C
B B B

B T C
B B

( n ) n Cδm mV d
m m n ( M ) ρ[ ( n )ρ ]

ρ
ρ

⎛ ⎞⎛ ⎞ + −+
= +⎜ ⎟⎜ ⎟ − + −⎝ ⎠⎝ ⎠

,  (22) 

where 

 
1C T T C

I I
B

m n m nn
M

−⎛ ⎞+
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 

2 T T C C
I I

T T2 C C2 T 2 C 2
I I I I

C = (M - 2)ρ +2[(m -1)n +(m -1)n ]ρ(1- ρ)

+[(m - 2)n +(m - 2)n +(n ) +(n ) ](1- 2ρ)
, 

 ∑
Tm

T2 T 2
I iT

i=1

1n = (1/n )
m

, 

and 

 ∑
Cm

C2 C 2
I iC

i=1

1n = (1/n )
m

. 

Note that when the ni
T and ni

C are all equal to n, Bn n= , Bn n= , 

T C
I In = n = 1/n , T2 C2 2

I In = n = 1/n , and 



Effect Sizes in Multi-Site Designs    19 

 ( 2) 2

2

M [1+(n -1)ρ]C =
n

−  

so that (21) reduces to (11) and (22) reduces to (12).  These expressions suggest that, 

when cluster sample sizes are unequal, substituting Bn  for n in (11) and (12) would give 

results that are quite close to the exact values. 

Applications in Meta-analysis 

The statistical results in this paper should be useful in deciding what effect sizes 

are desirable in a cluster randomized experiment.   They should also be useful for finding 

ways to compute effect size estimates and their variances from data that may be reported.  

We illustrate applications in some examples in the sections that follow.  

Intraclass correlations are needed for the methods described in this paper are often 

not reported.  However, because plausible values of ρ are essential for power and sample 

size computations in planning cluster randomized experiments, there have been 

systematic efforts to obtain information about reasonable values of ρ in realistic situations.  

Some information about reasonable values of ρ comes from cluster randomized trials that 

have been conducted.  For example, Murray and Blitstein (2003) reported a summary of 

intraclass correlations obtained from 17 articles reporting cluster randomized trials in 

psychology and public health and Murray, Varnell, and Blitstein (2004) give references 

to 14 very recent studies that provide data on intraclass correlations for health related 

outcomes.  Other information on reasonable values of ρ comes from sample surveys that 

use clustered sampling designs. For example Guilliford, Ukoumunne, and Chinn (1999) 

and Verma and Lee (1996) presented values of intraclass correlations based on surveys of 

health outcomes.  Hedberg, Santana, and Hedges (2004) presented a compendium of 
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several hundred intraclass correlations for academic achievement computed from national 

probability samples at various grade levels.  This later compendium provides national 

values for intraclass correlations as well as values for regions of the country and subsets 

of regions differing in level of urbanicity. 

Computing Effect Sizes When Individuals are the Unit of Analysis  

 The results given in this paper can be used to produce effect size estimates and 

their variances from studies that incorrectly analyze cluster randomized trials as if 

individuals were randomized.   The required means, standard deviations, and sample 

sizes can usually be extracted from what may be reported.   

 Suppose it is decided that the effect size δT is appropriate because most other 

studies both assign and sample individually from a clustered population.  Suppose that 

the data are analyzed by ignoring clustering, then the test statistic is likely to be either  

 
T CT C

T C
T

Y YN Nt
N N S

•• ••⎛ ⎞−
= ⎜ ⎟+ ⎝ ⎠

 

or 

 
2T CT C

T C
T

Y YN NF
N N S

•• ••⎛ ⎞⎛ ⎞ −
= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

. 

Either can be solved for  

 
T C

T

Y Y
S

•• ••⎛ ⎞−
⎜ ⎟
⎝ ⎠

, 

which can then be inserted into equation (15) along with ρ to obtain dT2.  This estimate 

(dT2) of δT can then be inserted into equation (16) to obtain vT2, an estimate of the variance 

of dT2.   
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 Alternatively, suppose it is decided that the effect size δW is appropriate because 

most other studies involve only a single site.  We may begin by computing dT2 and vT2 as 

before. Because we want an estimate of δW, not δT, we use the fact given in equation (5) 

that  

 
1

T
W

δδ
ρ

=
−

 

and therefore  

 2

1
Td
ρ−

         (23) 

is an estimate of δW with a variance of  

 2

1
Tv
ρ−

.          (24) 

 Example. An evaluation of the connected mathematics curriculum reported by 

Ridgway, et al. (2002) compared the achievement of mT = 18 classrooms of 6th grade 

students who used connected mathematics with that of mC = 9 classrooms in a 

comparison group that did not use connected mathematics.  In this quasi-experimental 

design the clusters were classrooms.  The cluster sizes were not identical but the average 

cluster size in the treatment groups was NT/mT = 338/18 = 18.8 and NC/mC 162/18 = 18 in 

the control group.  The exact sizes of all the clusters were not reported, but here we treat 

the cluster sizes as if they were equal and choose n = 18 as a slightly conservative sample 

size. The mean difference between treatment and control groups is TY•• - = 1.9, the 

pooled within-groups standard deviation S

CY••

T  = 12.37.  This evaluation involved sites in all 

regions of the country and it was intended to be nationally representative.  Ridgeway et al. 

did not give an estimate of the intraclass correlation based on their sample.  Hedberg, 
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Santana, and Hedges (2004) provide an estimate of the grade 6 intraclass correlation in 

mathematics achievement for the nation as a whole (based on a national probability 

sample) of 0.264 with a standard error of 0.019.  For this example we assume that the 

intraclass correlation is identical to that estimate, namely ρ = 0.264. 

Suppose that the analysis ignored clustering and compared the mean of all of the 

students in the treatment with the mean of all of the students in the control group. This 

leads to a value of the standardized mean difference of  

0 1536
T C

T

Y Y 
S

•• ••−
= . , 

which is not an estimate of any of the three effect sizes considered here.  If an estimate of 

the effect size δT is desired, and we had imputed an intraclass correlation of ρ = 0.264, 

then we use equation (15) to obtain 

 dT2 = (0.1536)(0.9907) = 0.1522. 

The effect size estimate is very close to the original standardized mean difference 

because the amount of clustering in this case is rather small.  However even this small 

amount of clustering has a substantial effect on the variance of the effect size estimate.  

The variance of the standardized mean difference ignoring clustering is  

 
2324 162 0 1531 0 009259

324 162 2 324 162 2
+

+ =
+ −

. .
* ( )

. 

However, computing the variance of dT2 using equation (16) with ρ = 0.264, we obtain a 

variance estimate of 0.050865, which is 549 percent of the variance ignoring clustering.  

A 95 percent confidence interval for δT is given by 

     0 2899 0 1522 1 96 0 050865 0 1522 1 96 0 050865 0 5942T. . . . δ . . . .− = − ≤ ≤ + = . 
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If clustering had been ignored, the confidence interval for the population effect size 

would have been -0.0350 to 0.3422. 

 If we wanted to estimate δW, then an estimate of δW given by expression (23) is 

 0 1522 0 1774
1 0 264

=
−
. .

.
, 

with variance given by expression (24) as 

 0.050865/(1 - 0.264) = 0.06911, 

and a 95 percent confidence interval for δW based on (17) would be 

 0 3379 0 1774 1 96 0 06911 0 1774 1 96 0 06911 0 6926W. . . . δ . . . .− = − ≤ ≤ + = . 

Computing Effect Sizes When Clusters are the Unit of Analysis  

 The results given in this paper can also be used to obtain different effects size 

estimates when the data have been analyzed with the cluster mean as the unit of analysis.  

In such cases, the researcher might report a t-test or an analysis of variance carried out on 

cluster means, but we wish to estimate δT.  In this case the test statistic reported will 

either be 

 
T CT C

T C
B

Y Ym mt
m m S

•• ••⎛ ⎞−
= ⎜ ⎟+ ⎝ ⎠

 

or 

 
2T CT C

T C
B

Y Ym mF
m m S

•• ••⎛ ⎞⎛ ⎞ −
= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

. 

Either can be solved for  

 
T C

B

Y Y
S

•• ••⎛ ⎞−
⎜ ⎟
⎝ ⎠

, 
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which can then be inserted into equation (11) along with ρ to obtain dB2.  This estimate of 

dB2 can then be inserted into equation (12) to obtain vB2, an estimate of the variance of dB2.   

Because we want an estimate of δT, not δB, we use the fact given in equation (6) that  

 T Bδ δ ρ=  

and therefore  

 2Bd ρ          (25) 

is an estimate of δT with a variance of  

 2Bρv .          (26) 

 Alternatively, suppose it is decided that the effect size δW is the desired effect size.  

We may begin by computing dB2 and vB2 as before. Because we want an estimate of δW, 

not δB, we use the fact given in equation (5) that  

 
1W B
ρδ δ
ρ

=
−

 

and therefore  

 2 1B
ρd
ρ−

         (27) 

is an estimate of δW with a variance of  

 2

1
Bρv
ρ−

.          (28) 

 Example. An evaluation of UCSMP Geometry reported by Senk (2002) compared 

the results of mT = 8 classrooms using UCSMP Geometry curriculum with mC = 8 

comparison classrooms that did not use the UCSMP curriculum.  In this quasi-

experimental design, clusters (classrooms) were the unit of analysis.  The cluster sizes 
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were not identical but the average cluster size in the treatment group was NT/mT = 139/8 = 

17.4 and NC/mC 115/8 = 14.4 in the comparison group.  The exact sizes of all the clusters 

were reported, but here we treat the cluster sizes as if they were equal and choose n = 15 

as a slightly conservative compromise sample size. The mean difference between 

treatment and control groups is TY•• - CY•• = -0.84, the pooled within-groups standard 

deviation SB  = 2.034.  This evaluation involved sites in several regions of the country 

and it was intended to be nationally representative.  Senk did not give an estimate of the 

intraclass correlation based on their sample.  Hedberg, Santana, and Hedges (2004) 

provide an estimate of the intraclass correlation in mathematics achievement in grade 10 

for the nation as a whole (based on a national probability sample) of 0.234 with a 

standard error of 0.010.  For this example we assume that the intraclass correlation is 

identical to that estimate, namely ρ = 0.264. 

These values lead to a value of the standardized mean difference of  

0 4130
T C

B

Y Y 
S

•• ••−
= − . , 

which is not an estimate of any of the three effect sizes considered here.  If an estimate of 

the effect size δB is desired, and we had imputed an intraclass correlation of ρ = 0.234, 

then we use equation (11) to obtain 

 dB2 = (-0.4130)(1.2649) = -0.4558, 

which is 26% larger than the unadjusted standardized mean difference.  The variance of 

the standardized mean difference ignoring clustering is  

 
28 8 0 4130 0 2577

8 8 2 8 8 2
+ −

+ =
× + −

( . ) .
( )

. 
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However, computing the variance of dB2 using equation (12) with ρ = 0.234, we obtain a 

variance estimate of 0.3239, which is about 60% larger than the variance computed 

ignoring clustering.  A 95 percent confidence interval for δB based on (17) is 

 1 5712 0 4558 1 96 0 3239 0 4558 1 96 0 3239 0 6596W. . . . δ . . . .− = − − ≤ ≤ − + = . 

 If we wanted to estimate δT, using expression (25) with ρ = 0.234 we obtain 

 0 4558 0.234 0 2205− = −. .  

as an estimate of δT with a variance given by expression (26) as  

 0.3239(0.234) = 0.0758. 

 If we wanted to estimate δW, then using expression (27) with ρ = 0.234 we obtain 

 0 2340 4558 0 2519
1 0 234

− =
−

.. .
.

− , 

as an estimate of δW with a variance given by expression (28) as 

 (0.3239)[0.234/(1 - 0.234)] = 0.0989. 

 The report of this study (Senk, 2002) gives the sample sizes for each cluster, 

which range from 5 to 25 and are therefore are not nearly all equal.  Because the 

individual cluster sample sizes are all given, it is possible to compute dB and its variance 

using the formulas for unequal sample sizes.  Using the data in Table 1, we compute Bn = 

12.997, and using (21) we compute  

 dB = (-0.4139)(1.1189) = -0.4621. 

We also compute  = 12.997, Bn 2T
In = 0.008342, 2C

In = 0.007089, and A = 0.4185, so 

that the estimate of vB using (22) is 0.2820.  Comparing the values of dB (-0.4558 versus -

0.4621) and estimates of the variance (0.3239 versus 0.2820) assuming equal cluster 

sample sizes with those using the exact cluster sample sizes, we see that even with these 
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large discrepancies among sample sizes, the values of dB and the variance estimates 

assuming equal cluster sample sizes are within 15 percent of the actual values.  If the 

value n = 13 had been used for the (common) cluster sample size (approximately the 

value of Bn or ) the results using the equal sample size formulas would have been quite 

close to the exact values. 

Bn

Conclusion 

 This paper has provided definitions of three different effect sizes that can be 

estimated in studies using cluster randomization.  Alternative methods of estimation are 

provided for each effect size, and the sampling variances are also given.  The sampling 

distribution of each estimator is shown to be a constant times a noncentral t-distribution 

and simple normal approximations are given in each case.  Because these approximations 

have been extensively studied in the context of simpler effect size estimates and power 

analysis, there is reason to believe that they are reasonably accurate unless sample sizes 

are quite small (which is unlikely in cluster randomized designs).  Simulation studies (not 

reported here) evaluating the accuracy of these approximations confirm expectations. 

The analytic work shows that clustering can have a substantial effect on the 

variance of effect sizes estimates in cluster randomized designs.  The example provided 

illustrates that small amounts of clustering can have a large effect on the variance of 

effect sizes, even if the effect on the expected value of the estimates is modest.  The 

results given in this paper can be used to estimate the effect sizes (and their variances) in 

cluster randomized trials that have been improperly analyzed by ignoring clustering, 

provided an intraclass correlation is known or can be imputed.  The effect size estimates 

can then be used in meta-analyses along with any other effect size estimates of the same 
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conceptual parameter, using the variances of the estimates to compute weights in the 

usual way. 

The results given in this paper require that a value of the intraclass correlation 

parameter ρ be known or imputed for sensitivity analysis.  In some cases external data 

about ρ may be available (e.g., from previous studies or compendia such as that of 

Hedberg, Santana, and Hedges, 2004).  It is important to use external values of ρ with 

considerable caution, because the value of ρ has substantial influence on the results of 

analyses.  In particular, it would be difficult to justify the use of the methods described in 

this paper using estimates of ρ obtained from small samples (small numbers of clusters) 

because those estimates are likely to be subject to considerable sampling error.  Similarly, 

it would be difficult to justify the use of external estimates of ρ, even from large sample 

sizes if those estimates were not based on a similar sampling strategy, with similar 

populations, and similar outcome measures.  However, making no correction for the 

effects of clustering at all corresponds to assuming that ρ = 0.  The assumption that ρ = 0 

is often very far from the case and thus it may introduce more serious biases in the 

computation of variances than using values of ρ that are slightly in error.   
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Appendix: Derivation of Sampling Distributions of Effect Size Estimates 

 The sampling distribution of the effect size estimates proposed in this paper all 

follow from the same theorem, given below.   

Theorem: Suppose that Y ~ N(µ, aσ2/ ) and that SN 2 is a quadratic form in normal 

variates that is independent of Y, so that the E{S2} = bσ2, and V{S2} = 2cσ4, where a, b, c, 

and are known constants.  Then  N

 Nb YT
a S

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

has approximately the noncentral t-distribution with b2/c degrees of freedom and 

noncentrality parameter 

 Nb µ Nbθ δ
a aσ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

, 

where δ = µ/σ.  Consequently 

 Y b aD T
S N

= =  

is a consistent estimate of the effect size δ with approximate variance 

 
2

2
a cδ
N b
+ .         (29) 

An approximately unbiased estimate of δ is given by DJ(b2/c), where the function J(x) is  

given by 

 3J 1
4 1

( x )
x

= −
−

. 

Proof: First obtain the approximate sampling distribution of S2.  Box (1954) gives 

the approximate sampling distribution of quadratic forms in normal variables (such as S2, 
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which is a linear combination of chi-squares) in terms of the first two cumulants of the 

quadratic form. Theorem 3.1 in Box (1954) implies that S2 is distributed as approximately 

a constant g times chi-square with h degrees of freedom, where g and h are given by g = 

V{S2}/2E{S2} = cσ2/b and h = 2(E{S2})2/V{S2} = b2/c, where E{X} and V{X} are the 

expected value and the variance of X.  Therefore we have that S2/gh = S2/bσ2 is 

distributed as a chi-square with h degrees of freedom divided by h.  This approximation is 

generally excellent and is the basis, for example, of the standard tests used in repeated 

measures analysis of variance (e.g., Geisser and Greenhouse, 1958).   

By the definition of the noncentral t-distribution (see, e.g., Johnson and Kotz, 

1970), it follows that  

 
2

2 2
Y N / a Nb Y

a SS / b

σ

σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

has (approximately) the noncentral t-distribution with b2/c degrees of freedom and 

noncentrality parameter 

 Nb µθ
a σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

Using properties of the noncentral t-distribution, via arguments that parallel those in 

Hedges (1981), it follows that D is a consistent estimator of δ, that DJ(b2/c) is an 

unbiased estimator of δ, and the variance of D is approximately given by (29). □ 

 The theorem can be applied to obtain the sampling distribution of each of the 

effect size estimators given in this paper, using some elementary facts.  In each case we 

apply the theorem with T CY Y Y•• ••= − , T Cµ µ µ• •= − , and = NN TNC/(NT + NC), but with 
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different definitions of S and σ.  Therefore in each case, we use the fact that the mean of 

TY Y•• ••− C is given by 

{ }T C TY Y Cµ µ•• •• • •− = −E . 

However the variance of TY Y•• ••− C and the mean and various choices of S require 

different derivations in the balanced (equal cluster sample size) and unbalanced (unequal 

cluster sample size) cases. 

Equal Cluster Sample Sizes 

 In the case of equal cluster sample sizes, a direct argument gives the variance of 

the mean difference as 

 { } ( )
1

2 2
T C

T C
W BT C

N NY Y n
N N

σ σ
−

•• ••
⎛ ⎞

− = +⎜ ⎟⎜ ⎟+⎝ ⎠
V . 

We also use the moments of SB
2, SW

2 , and ST
2, which are derived from their relation to 

sums of squares (see, e.g., Snedecor, 1956).  Specifically, because  

n(M – 2)SB
2/(nσB

2 + σW
2) has a chi-squared distribution with (M – 2) degrees of freedom, 

the mean of SB
2 is 

 { }
2

2 2E W
B BS

n
σ

σ= +         (30) 

and the variance of SB
2 is  

 { }
2 2

2
2

2
V

2

( )

( )
B W

B
n

S
n M

σ σ+
=

−

2
.       (31) 

Similarly, because (N - M)SW
2/σW

2 has the chi-square distribution with (N - M) degrees of 

freedom, the mean of SW
2 is σW

2 and the variance of SW
2 is 
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 { }
4

2 2
V W

WS
N M
σ

=
−

.        (32) 

Because 

 
2 2

2 2
2

( ) ( )B W
T

n M S N M S
S

N
− + −

=
−

, 

the expected value of ST
2 follows from the expected values of SB

2 and SW
2, namely 

 { }2 2 2
2T W

N nS
N

2
Bσ σ−⎛ ⎞= + ⎜ ⎟−⎝ ⎠

E ,      (33) 

and the variance of ST
2 follows from the variances of SB

2 and SW
2, namely 

{ }
4 4

2
2

2 2 2 2 4 2
V

2
W B

T
N n N n N n

S
N

− + − + −
=

−
( ) ( ) ( )

( )

2 2
B Wσ σ σ σ .   (34) 

 The distribution of dW. In this case we apply the theorem with σ2 = σW
2 and S2 = 

SW
2.  Here  

 
2 2

2
1 1

1
W B

W

n ( n )ρa
ρ

σ σ

σ

+ + −
= =

−
. 

Because the expected value of SW
2 is σW

2, it follows that b = 1.  Because the variance of 

SW
2 is 2σW

4/(N – M), it follows that c = 1/(N – M).  Substituting the expressions for a, b, 

and c into (29), noting that σB
2/σW

2 = ρ/(1- ρ), and simplifying, gives the result in 

expression (8). Since S2 involves only a single chi-square, it follows that the t-statistic 

corresponding to dW has exactly the noncentral t-distribution with (N – M) degrees of 

freedom.   

 The distribution of dB1. In this case we apply the theorem with σ2 = σB
2 and S2 

= 2 2 2ˆ /T B WS Sσ = − n .  Here, 
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2 2

2

1 1( )B W

B

n n ρa
ρ

+ + −
= =

σ σ
σ

. 

The expected value of S2 is just σB
2, so b = 1.  The variance of S2 is 

 { } { } { }
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2 21
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so that  

 
2 2 2 4

2 4 22
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n
c
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σ σ σ
4σ σ

+
= +

− −
. 

Substituting the expressions for a, b, and c into (29), noting that σW
2/σB

2 = (1- ρ)/ ρ, and 

simplifying, gives the result in expression (10).  

The distribution of dB2. In this case we apply the theorem with σ2 = σB
2 and S2 = 

SB
2.  Here, as in dB1,   

 

2
2

2

1 1( )
W

B

B

n ρna
ρ

+ + −
= =

σ
σ

σ
. 

 Using the expected value of SB
2 given in (30), gives 

 1 1( )n ρb
nρ

+ −
= . 

Using the variance of SB
2 given in (31) yields 

 
2 2

2 22

( )

( )
B W

B

n
c

n M

σ σ 2

σ

+
=

−
. 

Substituting the expressions for a, b, and c into (29), noting that σW
2/σB

2 = (1- ρ)/ρ, and 

simplifying, gives the result in expression (12).   Since S2 involves only a single chi-

square, it follows that the t-statistic corresponding to dB2 has exactly the noncentral t-

distribution with (M – 2) degrees of freedom. 
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 The distribution of dT1. In this case we apply the theorem with σ2 = σT
2 = σW

2 +

σ

 

B
2 and S2 = 2ˆTσ .  Here  

2 2

2 1 1W B T
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n
a ( n )ρ

σ σ

σ

+
= = + − . 

The expected value of S2 is just σT
2, so b = 1.  The variance of S2 is 
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so that  
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2

Substituting the expressions for a, b, and c into (29), noting that ρ = σB
2/(σ 2 + σW

2 ) and  

1 - ρ = σW
2/(σB

2 + σW
2 ), and simplifying, gives the result in expression (14).  

 

B

 The distribution of dT2. In this case we apply the theorem with σ2 = σT
2 = σW

2 + 

σB
2 and S2 = ST

2.  Here, as in dT1,  
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Using the expected value of ST
2 given in (33), we compute 
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Using the variance of ST
2 given in (34), we compute 
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Substituting the expressions for a, b, and c into (29), dividing the numerator and 

denominator by σW
2, noting that noting that ρ = σB

2/(σB
2 + σW

2 ) and    

 estimators 

plex.  We first derive the variance of the mean 

1 - ρ = σW
2/(σB

2 + σW
2 ), and simplifying, gives the result in expression (16).  

Unequal Cluster Sample Sizes 

 When cluster sample sizes are unequal, expressions for the effect size

and their variances are more com

differences. A direct argument leads to 

 { } (
1

T C
T CY Y

N N
)2 2

T C
W B

N N nσ σ
⎛ ⎞

−

•• ••− = +
⎝ ⎠

     (35) 

nd 

⎜ ⎟⎜ ⎟+
V

a

 { } ( )
1

2 2
T C

T C
B B BT C

m mY Y n
m m

σ σ
−

∗• ∗•
⎛ ⎞

− = +⎜ ⎟⎜ ⎟+⎝ ⎠
V ,     (36) 

her andw e n Bn are defined in the text.  The expecte

calculated from the analysis of variance across clusters within the treatment groups.  

n, 

 

n 

 

d value and variance of ST
2 can be 

When cluster sample sizes are unequal, the between and within cluster sums of squares 

are still independent, and the within cluster sum of squares has a chi-square distributio

but if ρ ≠ 1 the between cluster sum of squares does not have a chi-square distribution.  

However because the between cluster sum of squares is quadratic form, the methods used

in this paper apply and the distribution of effect size estimates can be obtained.  To obtai

the expected value of ST
2, use the fact that  

2

2

T T C C

T
SSB SSW SSB SSW

N
+ + +

−
S = , 
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where SSBT and SSWT and SSBC and SSWC are the sums of squares between and within 

clusters in the treatment and control groups, respectively.  Using the expected values of 

the SSB’s and SSW’s given, for example, in equations 77 and 78 on page 70 of Searle, 

Casella, and McCulloch (1992), we obtain 

 { }
2

2

2
2 B

T W
BσE S σ
N

= +
−

,        (37) 

where B is the auxiliary constant defined in (20).  Because the between clusters variance 

component estimates in the treatment and control groups are 

 ( )2
T T

T
B T

U

MSB MSWˆ
n

σ −
=  

and 

 ( )2
C C

C
B C

U

MSB MSWˆ
n

σ −
= , 

it follows that ST
2 can be written as a function of between and within cluster variance 

components 

 
( ) ( )2 2

2
2

T C T T C C
B B

T

ˆ ˆSSW SSW A A
S

N

σ σ+ + +
=

−
. 

Therefore the variance of ST
2 is given by 

( ) { } { } { } ( ) ( ) ( ) ( )

( ) ( )

2 2 22 2

2 2

2

2 2
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σ σ

2C
B
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⎫
⎨ ⎬ ⎨
⎩ ⎭ ⎩

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎬
⎭ .  
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Using expressions 95 and 102 for the variances of the sums of squares and the variance 

component estimates and expression 96 for the covariance term from pages 74 and 75 of 

ying yields  

 

Searle, Casella, and McCulloch (1992), and simplif

{ }
4 2 2 4

2
2 2

2 2 2
2 2 2

W B W B
T

B A
N ( N ) ( n )
σ σ σ σ

− −

where A and B are the auxiliary constants in (20). 

 The expected value and variance of S

V S = + +
−

,     (38) 

see, 

 – 2)2, where VT and 

VC are the covariance matrices of y  and y .  Here V  is an mT by mT diagonal matrix 

whose ith diagonal element is σB
2 + σW

2/ni
T, and VC is an mC by mC diagonal matrix whose 

element is σB
2 + σW

2/ni
C.  Using this theorem we obtain 

 

B
2 can be derived directly.  Writing SB

2 = 

(yT’ATyT + yC’ACyC)/(M - 2) where yT and yC are vectors of treatment and control group 

cluster means, respectively, and AT and AC are mT by mT and mC by mC matrices defined 

by AT = I – 11’/mT and AC = I – 11’/mC respectively where I is an identity matrix and 1 

is a column vector of 1’s of appropriate dimensions.  A direct, but tedious application of a 

theorem on the mean and variance of variance of quadratic forms in normal variables (

e.g , Searle, 1971, p. 57) gives the mean of SB
2 as {trace(ATVT) + trace(ACVC)}/(M – 2) 

and variance of SB
2 as 2{trace(ATVTATVT) + trace(ACVCACVC)}/(M

T C T

ith diagonal 

{ }
2

2 2 W
B B

B
E S

n
σ

σ= +         (39) 

and  

{ }
4 4 2 2

2 1 22 2 2 4B W B W( M ) C CV S 22
B

( M )
σ σ σ σ− + +

=     (40) 
−

where C1 = T T2 C C2 T 2 C
I I I(m - 2)n +(m - 2)n +(n ) +(n )2

I  and C2 = T T C C
I I(m -1)n +(m -1)n . 
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 The distribution of dW. To obtain the distribution of dW, apply the theorem with σ2 

= σW
2 and S2 = SW

2. Here 

 
2 2

2
1 1

1
W B

W

n ( n )ρa = = , 

 = E{S , 

 simplifying gives (18).  Note that since S2 involves only a single 

chi-square, it follows that the t-statistic corresponding to dW has exactly the noncentral t-

distribution with (N – M) degrees of freedom. 

heorem with σ2 = σT
2 = σB

2 + σW
2 

and S2 = ST
2.  Here  

 

ρ
σ σ

σ
+ + −

−

b W
2}/σW

2 = 1, and c = V{SW
2}/2σW

2 = 1/(N – M).  Substituting the expressions for a

b, and c into (29) and

 The distribution of dT. In this case we apply the t

2 2

2 2 1 1W B

B W

na ( n )ρσ σ
σ σ

+
= = +

+
. −

Using the expected value of ST  given in (37), compute 
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2 2 2W B Nσ σ −⎝ ⎠+
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 of ST
2 given in (38) compute 
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Substituting the expressions for a, b, and c into (29) and simplifying, gives the result in 

expression (20).  

ion of dB, apply the theorem with σ2 

= σB
2 and S2 = SB

2.  Here 

 The distribution of dB.  To obtain the distribut
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2 2 1 1W B B Bn ( n )

2
B

ρa
ρσ

= = . 

Using the expected value of SB
2 given in (39) gives  

σ σ+ + −

2
2 W

2
1 1B

B B

BB

n ( n )ρb

σ

= 
n ρ

σ

σ

+
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= . 

Using the variance of SB
2 given in (40), compute c = V{SB

2}/2σB
4 as  

 
4 4 2 2 2 2

1 2 1 2
2 4 2
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( M ) C C ( M )ρ C ( ρ ) C ρ( ρ )c
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σ
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where C1 and C2 are given above.   Substituting a, b, and c into (29) and simplifying 

yields (22). 
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Table 1 
Data from the Evaluation of UCSMP Geometry Second Edition: HSST Geometry test 

UCSMP   Comparison 
n Mean SD  n Mean SD
9 34.4 10.1  7 39.3 13.7
5 29.0 8.9  9 36.7 14.1

22 50.3 12.7  13 43.5 12.7
20 48.3 9.3  17 42.2 12.3
20 46.8 15.0  19 48.4 14.8
17 47.5 10.7  15 49.7 10.2
25 40.4 10.0  14 38.6 15.0
21 33.8 10.8   21 38.8 17.1

Note: These data are from Senk, 2002. 




