SECTION 33 1000 - WATER DISTRIBUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Comply with most current edition of the Northwestern University Design Standards.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building from the source to a point 1'-0" above finished floor or 1'-0" inside the exterior wall of the building as shown on the drawings.

B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

C. Related Sections:

1. Section 22 0000 "Common Work Results for Plumbing"
2. Section 22 1118 "Domestic Water Distribution System."
3. Section 22 2114 "Plumbing Specialties."
4. Section 22 4000 "Plumbing Fixtures."
5. Section 22 4500 "Plumbing Equipment."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Regulatory Requirements:

1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:

1. Ensure that valves are dry and internally protected against rust and corrosion.
2. Protect valves against damage to threaded ends and flange faces.
3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:

1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
2. Protect from weather. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
1. Notify Architect, Construction Manager, and Owner no fewer than seven days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Architect's, Construction Manager's, and Owner's written permission.
3. Coordinate utility shut down with utility Owner.

1.9 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K, ASTM B 88, Type L and ASTM B 251 water tube, annealed temper.
 2. Copper, Pressure-Seal Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 b. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.

B. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.

C. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 2. Gaskets: AWWA C111, rubber.

C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

D. Flanges: ASME 16.1, Class 125, cast iron.

2.3 JOINING MATERIALS
A. Brazing Filler Metals: AWS A5.8, BCuP Series.

2.4 PIPING SPECIALTIES
A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
 b. Center-Sleeve Material: Manufacturer's standard, Carbon steel, Stainless steel, Ductile iron, or Malleable iron.
 c. Gasket Material: Natural or synthetic rubber.
 d. Pressure Rating: 200 psig minimum.
 e. Metal Component Finish: Corrosion-resistant coating or material.

C. Split-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 b. Sleeve Material: Manufacturer's standard, Carbon steel, or Stainless steel.
 c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 e. Pressure Rating: 200 psig minimum.
 f. Metal Component Finish: Corrosion-resistant coating or material.

D. Flexible Connectors:
 1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.
 2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.
2.5 CATHODIC PROTECTION

A. Cathodic Protection shall be per the City of [Evanston, Chicago] Water & Sewer Division Standards.

2.6 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:

1. Nonrising-Stem, Metal-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

2. Nonrising-Stem, Resilient-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

3. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 250 psig.
 3) End Connections: Push on or mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

4. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc, bronze disc and seat rings, and bronze stem.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Flanged.

5. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
B. UL/FMG, Cast-Iron Gate Valves:

1. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

2. OS&Y, Rising-Stem Gate Valves:
 a. Description: Iron body and bonnet and bronze seating material.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

C. Bronze Gate Valves:

1. OS&Y, Rising-Stem Gate Valves:
 a. Description: Bronze body and bonnet and bronze stem.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Threaded.

2. Nonrising-Stem Gate Valves:
 a. Description: Class 125, Type 1, bronze with solid wedge, threaded ends, and malleable-iron handwheel.
 1) Standard: MSS SP-80.

2.7 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:

1. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: AWWA, cast-iron, nonrising-stem, metal or resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.
B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.

1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.8 CORPORATION VALVES AND CURB VALVES

A. Service-Saddle Assemblies: Comply with AWWA C800. Include saddle and valve compatible with tapping machine.

1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.

B. Curb Valves: Comply with AWWA C800. Include bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.

1. Shutoff Rods: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

2.9 CONCRETE VAULTS

A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.

1. Ladder: ASTM A 36/A 36M, steel or polyethylene-encased steel steps.
2. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.10 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants:

1. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
2.11 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:

1. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch high brass sleeve; and round escutcheon plate.

 b. Connections: Two NPS 2-1/2 inlets and one NPS 4 outlet.
 c. Inlet Alignment: Inline, horizontal or Square.
 d. Finish Including Sleeve: Polished bronze.
 e. Escutcheon Plate Marking: "AUTO SPKR & STANDPIPE."
 f. Per the City of [Evanston, Chicago] requirements.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 UTILITY LOCATION

A. Prior to any utility installation work commencing, Contractor shall call JULIE / one-call Illinois locate.

3.3 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
C. Do not use flanges or unions for underground piping.

D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground water-service piping NPS 2 to NPS 16 shall be the following:
 1. Soft copper tube, ASTM B 88, Type K and B 251; wrought-copper, solder-joint fittings; and brazed joints.
 2. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed, or mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.

F. Underground water-service piping NPS 30 shall be the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed, or mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.

3.4 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 and smaller installation.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Underground Valves, NPS 3 and Larger: AWWA, cast-iron, nonrising-stem, metal or resilient-seated gate valves with valve box.
 2. Underground Valves, NPS 4 and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
 3. Use the following for valves in vaults and aboveground:
 a. Gate Valves, NPS 2 and Smaller: Bronze, nonrising or rising stem.
 b. Gate Valves, NPS 3 and Larger: AWWA, cast iron, OS&Y rising stem, metal seated.
 c. Check Valves: AWWA C508, swing type.
 4. Pressure-Reducing Valves: Use for water-service piping in vaults and aboveground to control water pressure.
 5. Relief Valves: Use for water-service piping in vaults and aboveground.
 a. Air-Release Valves: To release accumulated air.
 b. Air/Vacuum Valves: To release or admit large volume of air during filling of piping.
 c. Combination Air Valves: To release or admit air.
 6. Detector Check Valves: Use for water-service piping in vaults and aboveground to detect unauthorized use of water.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.
B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
 5. Comply with City of [Evanston, Chicago] Water & Sewer Division requirements.

D. Make connections NPS 2 and smaller with drilling machine according to the following:
 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 4. Install corporation valves into service-saddle assemblies.
 5. Install manifold for multiple taps in water main.
 6. Install curb valve in water-service piping with head pointing up and with service box.
 7. Comply with City of [Evanston, Chicago] Water & Sewer Division requirements.

E. Comply with NFPA 24 for fire-service-main piping materials and installation.
 1. Install copper tube and fittings according to CDA's "Copper Tube Handbook."

F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.

G. Bury piping with depth of cover over top at least 66 inches, with top at least 12 inches below level of maximum frost penetration (unless otherwise noted), and according to the following:

H. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

I. Install Tracer Wire per 22 0000 “Common Work Results for Plumbing”.

3.6 JOINT CONSTRUCTION

A. Make pipe joints according to the following:
 4. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
b. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges, flange kits or nipples.

c. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
4. Bolted flanged joints.
5. Heat-fused joints.
6. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
3. Steel Piping; per City of [Evanston, Chicago] Water & Sewer Division Specifications and Details.

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

C. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

D. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

E. MSS Valves: Install as component of connected piping system.

F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

G. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves.

H. Relief Valves: Comply with AWWA C512. Install aboveground with shutoff valve on inlet.
3.9 DETECTOR-CHECK VALVE INSTALLATION
 A. Install in vault or aboveground.
 B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
 C. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.10 WATER METER INSTALLATION
 A. Install water meters, piping, and specialties according to utility company's written instructions.
 B. Water Meters: Install displacement-type water meters, NPS 2 and smaller, in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets and valved bypass around meters unless prohibited by authorities having jurisdiction.
 C. Water Meters: Install compound-type water meters, NPS 3 and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 BACKFLOW PREVENTER INSTALLATION
 A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
 B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
 C. Do not install bypass piping around backflow preventers.
 D. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.12 WATER METER BOX INSTALLATION
 A. Install water meter boxes in paved areas flush with surface.
 B. Install water meter boxes in grass or earth areas with top 2 inches above surface.

3.13 CONCRETE VAULT INSTALLATION
 A. Install precast concrete vaults according to ASTM C 891.
3.14 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

B. Wet-Barrel Fire Hydrants: Install with valve below frost line. Provide for drainage.

C. AWWA Fire Hydrants: Comply with AWWA M17.

D. UL/FMG Fire Hydrants: Comply with NFPA 24.

3.15 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

B. Install protective pipe bollards on two sides of each fire department connection.

3.16 CONNECTIONS

A. Connect water-distribution piping to existing water main. Use tapping sleeve and tapping valve or method approved by the Water & Sewer Division.

3.17 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.18 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 “Earth Moving.”

3.19 CLEANING

A. Clean and disinfect water-distribution piping as follows:
1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.

3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 33 1000