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Abstract 

Providing agricultural advice at scale poses operational challenges. Technology may help 
if repeating content reinforces learning for recipients and thus improves adoption, but risks 
reducing efficacy given limited customization and human interaction. The researchers 
tested videos shared with female farmers in India as a supplement to standard human-
provided extension services promoting a climate-smart practice, System Rice 
Intensification. The average treatment effects are large but imprecise because of non-
normally distributed outcomes, specifically fat right tails. Weighted quantile regressions 
show that the imprecision in estimating an average treatment effect comes from farmers 
with output or yields in the upper quantiles. Both quantile regressions of the 25% and 50% 
quantiles and a Bayesian hierarchical model (robust to several priors) reveal positive 
treatment effects, and two subtreatments, one that reinforces information on labor costs 
from adoption and a second that presents role models to motivate adoption, lead to even 
higher estimated treatment effects on output. 
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1 Introduction

To be effective, information interventions such as agricultural extension programs must not
only deliver relevant content but must also deliver that content well. Evaluations of exten-
sion efforts yield a wide range of treatment effects, yet most evaluations focus on varying the
content (typically testing content versus no content) and not pedagogical aspects (such as
complementing human interaction with videos versus just human interaction). Furthermore,
the decision to shift to technology, either in lieu of or to complement human interaction,
may be critical for testing how and what information is disseminated. Video, in particular,
offers the opportunity to control the message, by both repeating (i.e., reinforcing) content
to recipients, ensuring consistency across recipients, and providing a level of relatability if
presented by protagonists in similar circumstances to their recipients. Yet technology also
risks favoring control and homogeneity of messaging in place of the customization inherent
from human interaction.

We test technologically-distributed agricultural extension in India by supplementing an ex-
isting face-to-face program with a video based component in a randomized controlled trial
(RCT). The videos include multi-stepped instructions on a climate-smart technology, sys-
tem rice intensification (SRI), and aim to increase adoption by reinforcing the face-to-face
extension with both some repetition of material combined with more nuanced messages ad-
dressing common perceived challenges particularly for female farmers. We conducted the
RCT with Digital Green (DG), a non-governmental organization recognized for its tailored
video instruction aimed at hard-to-reach female farmers in rural Bihar, India. The experi-
ment compares traditional face-to-face training without videos to traditional training com-
plemented by videos, and does not include a pure control group. The core content remains
consistent across all participants, as National Rural Livelihoods Mission (NRLM) extension
training was already active in all rice-growing districts of Bihar.1 The addition of video aims
to enhance extension training by ensuring quality control, fostering message consistency, and
tailoring information to the specific uncertainties related to the SRI practice - labor supply
and personal self-efficacy. To estimate the effects of layering video content onto traditional
extension training, we compare our control group, farmers who receive NRLM training, to
our treatment groups - farmers who receive NRLM and video training. To estimate the ef-
fects of targeted messaging regarding labor supply and personal self-efficacy, we compare our
control group to farmers who receive DG videos that also include messages on labor supply,
self-efficacy, and both labor supply and self-efficacy. The labor message prepares farmers for
the reality of the labor requirements, while the self-efficacy message helps participants feel
capable of implementing the technique.

The average treatment effects are economically large and positive for output and yields along
the main DG arm (DG no messaging) but are not statistically significant after applying mul-
tiple hypothesis corrections. However, a challenge with our outcome variables, including out-

1We do not have a treatment arm that received no training at all as NRLM extension training was already
active in all the rice-growing districts of Bihar. For an evaluation of NRLM alone, which focuses on other
household outcomes - e.g. income, consumption, credit access - see Kochar et al. (2020) as well as Hof (2021)
and Datta (2015) for its impacts on debt relief and restructuring household debt.
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put, yields, inputs (labor and expenditures), and estimated profits, is that their distributions
exhibit fat tails. Fat tails may be due to measurement error, population characteristics, or
heterogeneous treatment effects, and are common in agricultural data (Okorie et al., 2023).
Heavy-tailed data can complicate estimation of average treatment effects because the stan-
dard assumptions for average treatment effect do not apply. Quantile regressions are often
the next step at providing a more complete picture of treatment effects (Li, 2015; Li et al.,
2023; Meager, 2022), but estimating treatment effects in the upper quantiles is complicated
due to data sparseness in the tail area (Li et al., 2023), and estimating quantile effects in the
lower quantiles is complicated by large spikes in the data around zero (Meager, 2022). We
thus take a broader methodological perspective in estimating the impacts of our interven-
tion that includes standard ATEs, quantile regressions, weighted quantile regressions (Athey
et al., 2023) and a Bayesian hierarchical model with varied priors.

First, quantile regressions demonstrate that there are economically meaningful and statisti-
cally significant effects for the 25%, and 50% quantiles on output and yields. Depending on
the specification, both the main DG arm without messaging and DG arm with both messages
improve output per farm and per acre. The estimates from the upper quantiles are most im-
precisely measured, and this leads to imprecise estimates of the average treatment effect. To
see this, we apply a weighted average quantile effect estimator (WAQ) (Athey et al., 2023),
which allows for aggregation of treatment effects where the weights differ across quantiles.
The WAQ estimator confirms that the observations above the median are particularly noisy
and underweights the effects in the upper tails for a more precise average treatment effect.
Finally, we estimate a Bayesian hierarchical model with two different sets of priors, which
allows us to account for fat tails by specifying the data generating distribution. The mag-
nitude of the mean of the Bayesian posteriors of the treatment effects on output and yield
are largely in line with the magnitude of the point estimates between the 25% and median
quantile regressions and both suggest that the effects on output per farm and per acre are
non zero. The median quantile effect for output per farm increases by 15% and per acre
by 18%. The latter estimations indicate that our more nuanced messages regarding labor
and self-efficacy have a complementary effect. The two messages together produce the most
favorable results for participants’ output at the 25% quantile and median effects. For yields,
the DG no messaging arm and DG + both arm are equally effective for the 25% and median
quantile. In contrast, the DG arms with just one of the messages - labor or self-efficacy -
did not have statistically significant impacts, and for the self-efficacy message the effect sizes
were close to zero, suggesting that delivering a self-efficacy message alone actually lessened
the effectiveness of the DG video. This may be because improving self-efficacy can also
reduce preparedness, which is necessary for a multi-step task like SRI. Overall, our results
suggest that the imprecisely measured ATE is likely due to imprecisely measured treatment
effects in the upper tails as well as to heterogeneity in the treatment effects, but that there
are clear economically and statistically significant effects for farmers with output at or below
the median.

Our findings contribute to several literatures. First, there is an emerging literature on video-
based learning in a number of non-agricultural settings that have had positive outcomes, for
example: affecting life-changing behaviors such as intake of fortified salt (Banerjee et al.,
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2017); sexual behavior (Banerjee et al., 2019); entrepreneurial activities (Bjorvatn et al.,
2020); financial literacy (Berg and Zia, 2017; Coville et al., 2019); political participation
(Mvukiyehe, 2018); and conflict resolution (Levy and Green, 2009).2 Video has the advan-
tage of being low cost, while still being able to target its content to the skill level of the
student (Muralidharan et al., 2019) and the teacher (Jackson and Makarin, 2018). Given
the success of video-based learning in other domains, it is not surprising that there has been
a push for video-based training in agriculture (Fabregas et al., 2019).

We test the video medium in agriculture and its ability to relay information about the labor
required for the SRI practice, and uncertainties regarding farmers’ beliefs in their own abili-
ties. Conveying and transferring details requires an immersive experience and Digital Green
accomplishes this in several ways. Their video viewing is embedded within a practice of
self-help group meetings, in the same way that Jackson and Makarin (2018) and Muralidha-
ran et al. (2019) embed video-based interventions within teacher-run instructional contexts.
Information is disseminated in a “bottom-up” way and in a context that encourages dis-
cussion, similar to farmer field schools, which are typically seen as more effective than the
“top-down” approach of Training and Visit (T&V) programs, but often prohibitively expen-
sive (Anderson and Feder, 2007). A Village Resource Person (VRP) plays the videos (three
in total across the season) curated by Digital Green within a practice of self-help group
meetings, with a question and answer period following each video showing. The how-to
videos also contain an element of entertainment – in the vein of Riley (2022), Bjorvatn et al.
(2020), Banerjee et al. (2017), and Banerjee et al. (2019)- with music and a narrative arc
that contain characters and a plot.

Only a handful of studies have tested the use of videos in agriculture extension training,
and they all focus on adoption of practices as opposed to productive farm outcomes, as we
do here. Nakasone and Torero (2016) test whether exposing children to agricultural how-
to videos at school affects their parents’ knowledge of agricultural practices and outcomes.
They find that parents’ knowledge increases by 26-34% and adoption of the tested practices
increases by 14-18%. LaRochelle et al. (2017) use text messages and a video-enabled phone
technology to deliver agricultural extension information. They find that a system of three
weekly text messages over the growing season increases knowledge of integrated pest man-
agement (IPM) practices by 18.2 percentage points and adoption of IPM by 6.8 percentage
points. Hörner et al. (2021) shows that videos added on to a “farmer-to-farmer” extension
program facilitates adoption of practices related to Integrated Soil Fertility Management
(ISFM), particularly for farmers who are not members of farmer groups.

Second, the delivery of the DG videos contain qualitative aspects that makes the implemen-
tation of SRI potentially less risky. In particular, video can help mimic a learn-by-doing and
learn-from-others approach. Learning from peers has been to shown to be one way in which
farmers improve their practices and productivity (Conley and Udry, 2010; Kondylis et al.,
2017), so much so that there are models of extension training based precisely on peer-to-
peer learning. Beaman et al. (2021) shows that using centrally located farmers, in terms of

2See DellaVigna and La Ferrara (2015) for a review, and WDR (2015) for an overview of edutainment
projects in international development.
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local social networks, is an effective means of disseminating information and increasing adop-
tion. Hörner et al. (2021) shows that farmer-to-farmer extension training, in which extension
agents train model farmers and model farmers train farmer group members, increases the
number of practices adopted for Integrated Soil Fertility Management (ISFM), and increases
complete adoption of all practices by 8.4 percentage points. However, there is a downside
of relying on peer learning for information diffusion. Peer-to-peer learning requires a full
growing season for farmers to observe their peers’ processes and outcomes from applying a
technique. Not only is that a long time to wait, but those observations can be confounded
by poor weather, poor soil conditions and other environmental factors. Conversely, videos
can expedite the learning process and resolve some of the uncertainty in implementing a new
technique when delivered by a more neutral, yet relatable, peer.

Third, we add to the growing literature in economics addressing fat-tailed data (Azevedo
et al., 2020; Crépon et al., 2019; Lewis and Rao, 2015; Stoyanov et al., 2011), and studies
that employ multiple methods to address this issue (Dehejia, 2003; Meager, 2019, 2022; Vi-
valt, 2020). Fat tails can lead to underpowered studies even with very large sample sizes
(Azevedo et al., 2020; Lewis and Rao, 2015). Our work demonstrates that other studies
investigating noisy outcomes such as output and revenue should review the distribution of
their data, and consider that not accounting for fat tails could result in erroneous conclusions.

Three additional studies, by Abate et al. (2023), Lecoutere et al. (2023) and Van Camp-
enhout et al. (2020), also investigate the impact of DG’s methodology (in Ethiopia and
Uganda). Abate et al. (2023) focuses on adoption of various practices when husbands are
present at training across several crops as the main outcome, where we focus on production
and productivity. Overall, they find that DG improves adoption beyond traditional T&V
visits (ranging in increases of 3 to 10 percentage points above the control group – a similar
magnitude found in this study). Spousal presence, however, did not affect adoption rates.
Van Campenhout et al. (2020) examines impacts on yield compared to a pure control with no
training and finds productivity increases of 10%, but their added treatments of interactive
voice messages and short messages services (SMS) that remind farmers about agronomic
practices had no added effect. Lecoutere et al. (2023) focuses on knowledge acquisition and
who receives information in the household, as well as on production and productivity. There
is a statistically significant increase in women’s knowledge index when women receive in-
formation alone or in pairs, while men’s knowledge index exhibits a statistically significant
decrease when women are present. Women’s production and productivity also exhibit a
statistically significant increase on their own plots (and no effect on jointly managed plots)
when trained alone, 35.8 kg (90% increase over the control) and 50.4 kg/acre respectively
(an 88% increase over the control), or in pairs, 51.5 kg (130% increase over the control) and
75.1 kg/acre (131% increase over the control) respectively).
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2 The Setting: Bihar, Digital Green and System of

Rice Intensification

We conducted the study in three districts in Bihar, India: Nalanda, Muzzaffapur, and Pur-
nia. Bihar is one of the poorest states in India, with a per capita GDP of 28,317 Rps (440
USD) per year, or about 1.20 USD per day, and low literacy rates: 69% for males and 49%
for females.3 This is particularly relevant as many of the latest extension trials use short
message services (SMS), which requires that farmers own their own phones and are liter-
ate. This frequently excludes female farmers from being able to access agricultural extension
information (Kansiime et al., 2019). In terms of socioeconomic status, the women are all
from reserved classes - namely, those classified as Scheduled Castes (SCs), Scheduled Tribes
(STs), and Other Backward Classes (OBCs). This system of reserved classes is meant to
address historical injustices and inequalities perpetuated by the caste system. For example,
the Yadav, a backwards class, is comprised of peasant-pastoral communities that are pri-
marily landless, agricultural laborers. They are one of the most discriminated caste group
in the feudal society of rural Bihar. Social norms can prevent any training from reaching
these classes, particularly women (Krishna et al., 2019). In addition, women are generally
placed below men and are denied an equal footing with men in society across many areas
of life including access to food and nutrition, education, health and economic opportunity
(Pankaj, 2020).

Agriculture remains the primary livelihood of individuals in Bihar, and is key to improving
individual well being and general food security. Yet, even during the Green Revolution, Bihar
experienced some of the lowest poverty reduction (Ravallion and Datt, 2002). With increas-
ing weather extremes, particularly in Bihar, rainfed agricultural region is subject to more
agricultural shocks (Samantaray and Gouda, 2023; United Nations Convention to Combat
Desertification, 2022; World Bank, 2023). Water productivity has been steadily declining
for rice production in Bihar (Najmuddin et al., 2018). Agricultural extension training in
India is meant to support farmers in this ever-changing climate, but extension training is
highly dispersed, which can make it difficult to quantify who and how many people are be-
ing reached. Among the relevant bodies are the Indian Council for Agricultural Research
(ICAR), which provides training information to the Department of Agriculture (DoA); the
state agricultural universities (SAU), which works with ICAR on relevant research topics; the
Agriculture Technology Information Centres (ATICs) and Krishi Vigyan Kendras (KVKs, or
Farm Science Centers), where ICAR conducts its research; and the Agricultural Technology
Management Agency (ATMA), a central government initiative that supports decentralized
state extension programs.4 Most of these institutions follow a T&V structure, which are
top-down, face-to-face, and insufficiently resourced to meet demand. As of 2017, the ratio
of public extension workers to families has been 1162:1.5

The above context presents itself as one in which video based training on SRI directed at
female farmers can be impactful. First, the videos are created with female protagonists of

3https://data.worldbank.org/
4For an in-depth overview of agricultural extension in India see Glendenning et al. (2010).
5http://icrier.org/pdf/Agriculture-Extension-System-in-India-2018.pdf
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the same caste as their viewers, which has been shown to improve uptake of technologies
(Raghunathan et al., 2023), and SRI requires less water and is less sensitive to droughts
(Mishra and Salokhe, 2010; Sridevi and Chellamuthu, 2012). The ability to include short
but direct messaging on labor and self-efficacy is also crucial. But farmers may be hesitant
to invest in that increased cost of labor if they are uncertain about the returns to SRI.
The message reduces some of this uncertainty in terms of how much labor is needed and
the potential returns. Furthermore, given women’s status at home and in the agricultural
system, they are less likely to feel capable of implementing a more complex technique and
the self-efficacy message addresses that.

2.1 Digital Green & NRLM

Microsoft India created DG in order to develop a technological solution that provides effec-
tive agricultural extension in India at scale. It began as a Microsoft research project whose
early promise in India led to spinning off the effort in 2008 as a non-profit. DG focuses its
efforts on amplifying the impact of smallholder extension programs. It accomplishes this by
overseeing the production of short how-to videos featuring local farmers executing productive
agricultural practices. The videos are then used as the basis for mediated group instruction,
which involves frequent pauses during video playback with a facilitator asking questions of
the audience. DG partners with and trains other organizations that disseminate the tech-
niques, and its method is also now used for other types of behavior change campaigns, such
as in health and nutrition. The video content is generated using an iterative approach with
the agricultural organizations and farmers for whom they are developed. A few key aspects
of DG’s early qualitative fieldwork found that viewers prefer to see and hear information
coming from individuals similar to themselves as opposed to trainers or government officials;
they prefer seeing multiple people and multiple locations throughout the video; and they
prefer mediation with pauses and interaction (Gandhi et al., 2009). Gandhi et al. (2009) was
a small-scale study that suggested that Digital Green was 10 times more cost-effective than
T&V in persuading farmers to adopt a new practice. As of 2018, Digital Green videos have
been viewed by over 1.5 million farmers in India, Ethiopia, and a handful of other countries.

In 2011, India’s Ministry of Rural Development launched the National Rural Livelihood
Mission (NRLM), a program supported by the World Bank. In Bihar, NRLM established a
semi-autonomous body called Jeevika, which was state-funded and organized as a non-profit
NGO. Its aim was to establish a network of self-help groups (SHGs) in which at least one
woman from every poor rural household was a member of a small group of 10-20 individuals
that met regularly. Jeevika would then involve the SHGs in microcredit programs, health
and nutrition education, and agricultural extension.6 Following a common practice among
Indian NGOs, Jeevika implemented agricultural extension within the SHG structure, with
extension officers providing agricultural advice and fielding questions at SHG group meetings,
as opposed to the one-on-one visits that are common with T&V. DG’s methodology of
group video-viewing fits well with SHG mobilization. Jeevika committed to incorporating
the methodology across Bihar with staggered phase-in, so as to permit a RCT. In the control

6Ministry of Rural Development – Letter on SHGs to the Government of India.
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and treatment villages, Jeevika implemented in-person extension via SHGs and locally hired
facilitators. In treatment villages, Jeevika, with advice from DG, ran video-viewing sessions
led by facilitators.

2.2 System of Rice Intensification

Rice, or paddy, as it is sometimes known, is a water-intensive crop that is grown widely in
both flood- and drought-prone Bihar. Conventional rice cultivation consists of continuous
flooding of fields with groundwater. However, India is rapidly depleting its scarce ground-
water resources in semi-arid areas of India, as much as a foot per year (Fishman et al., 2015;
Rodell et al., 2009; Russo et al., 2015). Roy et al. (2016) show that between 1901 and 2002
rainfall has declined by 1.974 mm per year and mean temperature has increased by 0.479
degrees Celsius per year in Bihar. The Ministry of Water Resources has reported levels of
arsenic (above 10 ppb) and fluoride (more than 1.5 mg/l) beyond the permissible limits in
Bihar, a direct consequence of groundwater depletion.7 In addition, Bihar is one of the worst
ranked states in India in terms of water conservation (a water index below 50%) according to
the Composite Water Management Index (CWMI) developed by the government’s National
Institution for Transforming India.8 Yet, Bihar is a major contributor to agricultural output,
and, therefore, to India’s food security. This set of circumstances – increasing groundwater
depletion and food insecurity – is not unique to Bihar. All across India and other parts
of the world, a changing climate will stress agriculture with more extreme storms, more
intense periods of agricultural drought, and more erratic weather patterns (Adams et al.,
1999; Collins et al., 2013; Dell et al., 2012; Dinar et al., 1998). Without additional training,
only farmers who have the means to deepen their well and purchase stronger pumps will be
able to continue to cultivate lucrative crops, such as rice, that require intensive watering.

For this reason, with input from Jeevika, we chose to focus on the introduction of the Sys-
tem of Rice Intensification (SRI) practice, a climate-smart technique for cultivating rice that
reduces resource use while also increasing yields. The increase in yields can be quite large,
in the order of 20-100%.9 Importantly, SRI reduces the need for many of the resources that
are typically intensively used for rice cultivation, including a reduction in irrigation, seeds,
and fertilizer (Wu and Uphoff, 2015).

Typically, SRI is comprised of raising seedlings in a nursery; transplantation of seedlings
of 8-14 day old seedlings; widely spaced transplants of 8-10 inches, regular weeding; and
controlled water management. However, as Glover (2011) emphasizes, SRI is not a fixed
technology and farmers can adopt parts of the practices on part of their field. Barrett
et al. (2021) shows in a RCT of SRI with 5,486 farmers in Madagascar that treated farmers
adopted only 1.3–1.74 of the six SRI practices introduced, and many farmers only applied
SRI practices to part of their land. But the main differentiating factors among all the above

7India Environmental 2015 Report, pg 14.
8National Institution for Transforming India Water Index Report, pg 17.
9http://sri.ciifad.cornell.edu/. Barrett et al. (2021) shows yield increases of 14-17%, Thakur et al. (2011)

finds a 32 percent increase, Kumar and Talati (2007) finds a 48 percent increase and Takahashi and Barrett
(2013) finds a 64 percent increase.

8

https://moef.gov.in/wp-content/uploads/2019/09/Final-SoER-2015-India-.pdf
https://social.niti.gov.in/uploads/sample/water_index_report2.pdf
http://sri.ciifad.cornell.edu/


practices tend to be controlled irrigation (as opposed to continuous flooding), which can lead
to additional weeding (as seedlings compete with weeds), and the process of transplantation.
Transplantation allows seedlings’ roots to grow larger and deeper into the soil that is kept
well aerated. The latter changes are typically reflected in farmers’ labor costs – 62% of the
extra labor for SRI is needed for weeding, and 17% for transplanting (Rakotomalala, 1997;
Takahashi and Barrett, 2013). These additional labor costs can often be prohibitive in the
adoption of SRI. For this reason, its profitability hinges on output prices being no lower
than the price of traditionally grown rice (Alem et al., 2015), and on labor costs not being
prohibitively expensive (Takahashi, 2013). In our context, market prices for rice in India are
relatively stable as the government of India fixes the central procurement price of rice before
planting begins (Aditya et al., 2017). This reduces some of the uncertainty in projecting
potential returns. Thus, we focus on the remaining factors that we identified as impeding
adoption.

3 Data and Design

We conducted an RCT to determine the causal impact of DG by randomly assigning which
villages would be offered the DG viewings of a relatively new agricultural technique, System
Rice Intensification (SRI).10 At the start of the intervention about a third of households in
the baseline had heard of SRI, and 10% had reported that they had implemented some form
of SRI, but we did not confirm what had actually been implemented. (These figures are
based on our baseline data, which was compromised; discussion below.)

We began with a list of 607 villages in three districts in the state of Bihar acquired via a
pre-censusing of the area: Nalanda, Purnia and Muzzaffapur. The villages in these districts
were selected as areas where NRLM was present, but DG had not yet been introduced nor
had SRI training been conducted prior to the start of the intervention. We then randomly
selected a sample of 420 villages from that list. Within each village we attempted to survey
approximately six women, randomly sampled from each village’s SHG. This met the require-
ments for sample size based on a frequentist approach. Our frequentist power calculations
were based on a 0.1 standard deviation minimum detectable effect size, 90% power, 40% cor-
relation between baseline and follow-up measurements, and 40% between repeated follow-up
measurements, with clustering at the village level and an intraclass correlation coefficient of
0.05.

All villages – in treatment and control – received NRLM training that incorporated SRI
messaging, where the implementation of the rural livelihoods program in Bihar is done by
an entity called Jeevika. Thus, there were no differences in the agricultural information
provided across control and treatment villages. The household survey collected information
on SRI adoption, household demographics, plot and paddy cultivation details, land owner-
ship, familiarity with SRI, perceptions on costs of SRI, paddy practices, water sufficiency,
access to agricultural extension, expenditures, self-efficacy and aspirations. We randomly

10RCT registered at Social Registry 313.
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assigned two-thirds of the villages (280) to the main treatment arm (video add-on to in-
person training). Of these 280, villages were randomly (70 villages each) assigned to one of
four subtreatments: base video, self-efficacy message, labor-cost message, both self-efficacy
and labor-cost message. The remaining 120 villages were assigned to the control (standard
NRLM in-person training with no DG video add-on).

Figure 2 depicts the experimental design and timelines. Figure 1 depicts the placement of
the control and treated villages. We collected four rounds of data (a baseline and three
follow-up waves).11 The baseline began in May 2014 before the permissible transplantation
date of June 15th in India. Note that farmers do not have to transplant on that date. It
is simply the date from which they can begin to transplant, and was fixed to save water
in the state. Note that NLRM/Jeevika still sets their own dates for training based on the
season and their relationship with farmers. Digital Green worked in tandem with Jeevika
to follow the correct timeline for training farmers. In the year the trial was conducted, seed
treatment and nursery activities occurred the first and second week of July, and transplan-
tation activities occurred in the 3rd week. The baseline survey was met with considerable
attrition due to the general elections in India and floods in Bihar that year, and ultimately
was incomplete, with only 719 of the 2520 households surveyed (see first row of Figure 2).
In particular, because of floods in Purnea and drought in Nalanda and Muzzaffapur, 67,
78, and 93 percent of the villages in Purnea, Nalanda and Muzzafurpur could be reached
respectively, which left us with only 719 households.

We conducted the first follow-up survey in August 2014, and reached 2340 of the 2520
households surveyed. This follow-up focused on adoption practices during the 2014 kharif
(summer) season, as well as inputs used during the planting season. The second follow-up
survey was conducted after the season, in order to also capture agricultural outputs (spring
Feb-March 2015, 2156 of the 2520 households surveyed). The third and final follow-up sur-
vey was conducted one year after the second (Feb-March 2016), in order to capture both
adoption and agricultural outcomes the following year, i.e., to measure the persistence of
any changes. We reached 2059 out of the 2520 households. The two end-of-season follow-up
surveys included questions on inputs used during harvest, off-farm labor performed after the
season ended, and perceptions regarding the SRI practice.

3.1 Program and Intervention

The intervention took place between June and August 2014, and June and August 2015,
during the months of cultivation and harvest. In the control villages, Jeevika ran its SHG-
based non-video extension program. This program covered three of the main SRI topics:
seed treatment, nursery bed preparation, and transplantation. Jeevika covered all three of
these components of SRI verbally in one session sometime between May and June and then
conducted three separate field demonstrations for each topic in the ensuing weeks. A VRP
was assigned approximately 10-12 SHGs per village. For the control, VRPs used charts and
posters during meetings, and utilized physical inputs (land, seeds, fertilizers) to conduct field

11The data were collected by the Jameel Poverty Action Lab South Asia.
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demonstrations.

In the treatment villages, we conducted the same in-person extension training as in the
control (both the verbal and demonstration plot sessions), and, in addition, Jeevika, with
assistance from DG, prepared videos on the same SRI topics: seed treatment, nursery bed
preparation, and transplantation.12 The videos were prepared based on standard DG pro-
tocol of featuring a local farmer who demonstrates the technique. Table B.1 describes the
content of the videos, all involving a woman farmer between 30-45 in age. In each treatment
village, Jeevika held its standard verbal session overviewing all four techniques in the treat-
ment villages, and then VRPs held viewing sessions for each of the topics in the following
weeks. Videos were shown in a common meeting place in the village where they could be
projected on a wall. Each video was shown at least one time, but SHGs were free to request
a second viewing during the time that the video was first shown or at a later meeting. SHGs
had a total of three DG meetings. VRPs were instructed to pause the videos and read any
text that appeared on the screen, after which they would conduct a question and answer
session. The treatment arms contained no difference in information content, material trans-
fers, or approximate frequency of SHG meetings compared with the control.

In the nested subtreatments, in addition to the core information about SRI, the DG videos
also provided information on two additional topics perceived as potential reasons for low SRI
adoption: uncertainty regarding labor costs, and farmer uncertainty in being able to perform
the SRI tasks. Appendix B includes the scripts used for these messages in the videos. One
of the major deterrents to adopting SRI is the potential need for extra labor, given SRI’s
more involved pre-planting and planting stages. As a result, in some cases SRI results in a
reallocation of labor from off-farm to farm labor, or the need for hired labor (Berkhout et al.,
2015; Takahashi, 2013), but in other cases SRI does not appear to require more labor but
does require additional attention to all of the particular tasks involved (Ches and Yamaji,
2015). In the SRI method prepared and presented by DG’s videos, SRI implementation
required an additional day of labor per katha13 at each stage for an average total of 4 more
days than conventional rice cultivation. The video clips exposit the potential returns to SRI,
and thus, it is up to each farmer to determine if those returns would be profitable for them
based on their labor availability or cost of hiring labor. On average, an additional day of
female labor costs in a range of Rps 125 to 170 and male labor costs in the range of Rps
160 to 180. Thus, if SRI yields 50 kg more of rice per katha, and the government price for
rice per kg is approximately Rps 10, then SRI can return Rps 300 more per katha on average.

Apart from the economic constraints to adoption there are also psychological aspects to
behavior change. Very often development schemes focus on alleviating external constraints
– income, credit, risk, time inconsistencies, etc.- but perceptions of one’s own abilities can
affect take-up even if the economics are in one’s favor. Farmers’ outcomes depend on their
own abilities to implement a new technique and the belief ex-ante that they can successfully
complete it. One way in which farmers develop this belief is by watching successful peers.
The peer-effects’ literature is rich with examples of how farmers learn from those who are

12Examples of Digital Green’s videos can be found here.
13One katha equals 0.4 acres.
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similar to them (Bandiera and Rasul, 2006; Bursztyn et al., 2014; Conley and Udry, 2010).
But peer-learning can be a slow process, like if a crop is new and there are few early adopters.
Potential means to expedite this learning process is by pairing peer farmers or by incorpo-
rating them into the extension training process (BenYishay and Mobarak, 2018; Kondylis
et al., 2017; Vasilaky and Leonard, 2018). This approach, however, requires at least one
season to realize an experience, and that at least one farmer adopts the practice without
prior experience during that season.

Thus, without sufficient examples of successful attempts by farmers like themselves, one’s
own self-efficacy becomes all the more important. Bandura (1977) is a seminal work that
outlines why personal self-efficacy matters for human agency. This work highlights how be-
liefs in one’s own abilities to produce certain outcomes and circumvent others is essential for
taking action. Compte and Postlewaite (2004) present a theoretical economic model wherein
a person’s history of successes and failures and the subsequent processing of this informa-
tion impacts future performance. Added confidence in one’s own ability can improve future
performance.

A handful of studies have investigated the role of self-efficacy in agriculture and adoption.
Wuepper and Lybbert (2017) demonstrates the need to address self-efficacy in development
studies, and they provide a broad overview of studies working on self-efficacy. Wuepper
et al. (2020) uses an instrumental variables approach to show that farmers in Ghana with
increased self-efficacy are better able to respond to periods of insufficient rainfall, and also
are more likely to adopt a climate-smart technology. Kreft et al. (2021) show that self-
efficacy is positively associated with the adoption of greenhouse gases mitigation measures
on their farm. Niles et al. (2016) find that self-efficacy is an important predictor of whether
farmers adopt climate-smart behaviors and that other measures such as attitudes and beliefs
regarding climate-smart behaviors do not.

We wrote the self-efficacy message in the video based on its conceptualization in Bandura
et al. (1999). First, self-efficacy is a domain-specific belief about one’s capabilities as opposed
to overall self-worth. The main sources of perceived self-efficacy are one’s family and one’s
peers. Second, the way in which self-efficacy is formed is via experience, observed experience
of peers and persuasion. We used the latter information to develop our self-efficacy message.
First, it is delivered by a farmer from the district who is from a similar social and economic
status to her viewers. That farmer then describes her experience with SRI, how she started
applying SRI to a sample part of a plot at first and then increased his/her coverage each year;
in what way she felt supported in her adoption of the technique by Village Representative
Persons (VRPs), and her potential success with the technique. Thus, the message provides
an observed experience of a peer with some persuasion.
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4 Empirical Model

In Appendix A, Table A.1, we present a balance table, comparing observable inputs and out-
puts of the paddy production process between treatment and control groups for the baseline.
As mentioned earlier, the baseline suffered from attrition, and, as a result, is a much smaller
sample than the targeted sample, as shown in Figure 2. We first test whether the observable
covariates for the baseline sample are statistically similar across treatment groups. The last
column presents the p-value from an F-test testing the equality of means across assignments.
Overall, we can see that treatment and control are balanced along the outcomes that we will
be studying: adoption, expenditures, output and profits. In Appendix A, Table A.2, we also
present summary statistics from the first follow-up survey for relatively constant aspects of
the household, including size of the household and details regarding the home and its assets,
and see no imbalances along these dimensions. We also include the summary statistics of
these variables using baseline data as point of comparison. Although, baseline data are bi-
ased by the attrition that occurred.

We estimate the following specification to capture intent-to-treat effects of the intervention
in Tables 1, 7, 6, A.3, and A.4. In Panels A throughout, we estimate the treatment effect
of receiving any of the DG treatment arms compared to only receiving standard extension
training. Second, in Panels B throughout, we estimate the causal ITT effects for each of
the four DG sub-treatments. Yi is the outcome variable for person i, Tki is treatment k for
person i, where the omitted category is the control group. T1 = DG only , captures whether
the household received DG training with no additional messaging; T2 = DG+labor indicates
whether the household received the added labor messages; T3 = DG+self-efficacy indicates
whether the household received the added self-efficacy messages, and T4 = DG+both indi-
cates whether the household received both the labor and self-efficacy messages. The coeffi-
cients, therefore, indicate the effect of the DG treatment arm and NRLM compared to only
NRLM in the control. ϵ is the error term, and we cluster our standard errors at the unit of
randomization: the village.

Yi = α + β1(T1i + T2i + T3i + T4i) + β2T2i + β3T3i + β4T4i + ϵi (1)

Thus, β1 captures the marginal effect of T1, that is, DG without any additional messaging.
The marginal effect of T2, is β1 + β2, thus, β2 alone is the marginal effect of T2 relative to T1.
β2 tells us whether the additional labor messaging increased or decreased the overall effect
of DG. The same is true for β3, and β4.

4.1 Average Treatment Effects

We first focus on the effects of the intervention on five outcomes as outlined in our pre-
registration: adoption, labor use, expenditures on farm inputs, output and estimated prof-
its.14 While the messages in the intervention were posed at a per acre basis we are also
interested in the practical impacts of the intervention for the average farmer in levels and
thus report our results in Table 1 in levels, and per acre in Table 6 for Year One.

14The study was pre-registered at Social Science Registry, Trial AEARCTR-0000313.
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Results are reported for Any DG in Panels A and C for Year One and Two respectively,
and then the intervention is broken down by DG without messaging followed by DG with
a labor message, DG with a self-efficacy message, and DG with both labor and self-efficacy
messages in Panels B and D. Standard errors are clustered at the village level with p-values
reported in parentheses and False Discovery Rate p-values (Anderson, 2008), which correct
for multiple hypothesis testing (MHT), are reported in brackets. In addition to the reported
p-values, we discuss the average change in each outcome as well as possible values for the
true average outcome that are compatible with our data and model within a 95% CI to high-
light the economic effect of the treatment, and the uncertainty around that effect (without
corrections for MHT).

Column 1 of Tables 1 and 6 report on an adoption index, constructed from questions re-
garding rice growing practices. The specific questions on SRI practices and their answers
are included in Appendix A, Table A.3, including the number of weedings in a season, the
age of saplings before transplantation, the number of saplings to be transplanted, spacing
between seedlings and spacing between rows. If the respondent answered the question within
the range of what is required for SRI practices, as taught by Digital Green, she received a
1 on that question and this was summed for the final index, which ranges from 0 to 5. We
observe zero average change in rice practices between the treated and control groups in Year
One with a possible range of values from -0.11 to 0.11 (95% CI). That is, at least among
these practices, farmers do not report behaving differently when exposed to DG videos as
compared to standard extension training.

Columns 2 and 3 of Table 1 report changes in intermediate outcomes in levels (and Table 6
per acres), for labor days and expenditures in growing rice. Note that in Year Two we did not
conduct a midline survey, where we captured data on mid-season practices; thus, in order to
compare the two years we report only the common set of endline practices including cleaning,
pesticide, threshing, and harvesting. Column 2 indicates an average change in labor days of
3.38 (-9.30 days/acre) for Any DG in Panel A, with possible values between -3 and 11 days
(-50 and 30 days/acre) (95% CI). Column 3 indicates an average change in expenditures
-130 Indian Rupees (298 Rps/acre) for Any DG in Panel A, with possible values between
-1,090 and 828 Rupees (-3,739 and 4,335 Rps/acre), approximately -16 and 12 USD (-28
and 32 USD/acre) (95% CI). Thus, unlike the zero average effect of the interventions on the
adoption index, we observe non-zero average effects on inputs, albeit imprecisely measured,
which are not statistically significant with and without MHT corrections.

Columns 4 and 5 report the effects of the intervention on final outcomes. For Any DG,
output increased by 124 kilograms per farm (250 kgs/acre) for Any DG in Panel A, with
possible values between -8 and 255 kilograms per farm (-56 and 566 kgs/acre) (95% CI). This
effect on output is economically significant, as mean output per farm was 635 kilograms per
farm (1250 kgs/acre), a nearly 19% (20%) increase. When broken down by treatment arm,
the DG no messaging arm and DG + both arm experienced the greatest average changes
255 (range of 10 to 500 kilograms per farm) and 144 kilograms per farm (range of -70 to 359
kilograms per farm), and 374 (range of -149 to 898 kilograms per acre) and 516 (range of
-70 to 1103 kilograms per acre) per acre.
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Estimated Profit is a constructed variable and is equal to the amount of output that the
farmer stored times the retail price of rice at the time, plus the amount of harvest sold
times the self-reported farm gate price at which it was sold. Since we did not survey farm-
ers on retail prices for rice we used the estimated retail price in Year One and Two (25.6
Rps/kgs and 27.8 Rps/kgs) taken from Bhoi et al. (2019). Estimated profits per farm expe-
rienced an average change of 1,953 Rupees (3,335 Rps/acre) for Any DG in Panel A, with
possible values between -753 and 4658 Rupees (-2,848 and 9,519) (95% CI). When broken
down by subtreatment arms, the average change for DG no messaging was 5184 Rupees per
farm (7,215 Rps/acre), with possible values between 717 and 9650 Rupees (-254 and 14,683
Rps/acre) (95% CI).

Taken together, many of the latter effects exhibit wide confidence intervals and do not meet
the criteria for statistical significance once multiple hypotheses testing, using the False Dis-
covery Rate, is applied.

Turning to Year Two effects, the direction of the effects is largely the same as in Year One,
but the magnitude of the effect sizes is, in most cases, reduced. We see that the average
effect on labor days is less than half of Year One’s effects, while expenditures declined by
more than twice the Year One’s effects. The average effect on output is reduced for Any DG
in Panel A and for DG no messaging in Panel B, which is the treatment arm that exhibited
the greatest economic impact in Year One. One possibility for this is that farmers perceive
SRI to be more effective when precipitation is high, and Year Two (2015) had lower rainfall
relative to Year One (2014) as shown in Figure 3. Bezabih et al. (2016) shows that higher
temperatures and reduced rainfall can lead to farmers being less likely to adopt SRI. An-
other possibility is that farmers disadopted some of the practices that they acquired in Year
One. Barrett et al. (2021) shows that disadoption of SRI is quite common, even when first
year yield and profit gains are statistically and economically significant. They suggest that
disadoption could be the result of heterogeneous returns to SRI, although they cannot point
to any observable source of such heterogeneity. All that being said, with diminished effect
sizes and equally imprecise estimates as Year One, the effects on our five outcomes are not
statistically significant at the 5% level with and without MHT corrections.

5 Quantile Treatment Effects

The above analysis presents estimated effects that are large, but after applying MHT cor-
rections, are not statistically significant in levels or per acre. However, with the exception
of the adoption index, all of our outcome variables exhibit distributions with fat tails, which
can make an OLS specification inappropriate. Figure 4 depicts histograms of the data for
the five outcome variables with substantial right tails. The data generating process of our
outcomes puts the classical inference that we used above into question, and inferences are
likely to be wrong. In particular, the normality parameter v, which reflects the degrees
of freedom in t-distribution, dictates whether the variance of the Student t-distribution is

15



finite. A normality parameter v ∈ (1,2] refers to an infinite variance for the Student t (Kr-
uschke, 2015). With the exception of the adoption index, which ranges between 0 and 5 by
construction, the remaining four outcome variables fit this criterion according to Table 3.
This would render the classical confidence intervals for labor, output and profits to be moot.15

The issue of fat tails has been studied in several contexts, from development economics to
finance and advertising, each for different reasons. In advertising, fat tails occur in outcomes
such as clicks or purchases because there are generally few successes among hundreds of
ad campaigns leading to long right tails. However, firms are interested in detecting small
increases in revenue despite large standard errors of revenue itself (Lewis and Rao, 2015).
In finance, there is evidence that fat tails in daily exchange rate and equity indices can
have important effects on volatility estimates and forecasts (Jacquier et al., 2004). Similarly,
the adoption of new technologies in developing countries as an outcome may follow a long
right tail in which there are few adopters and the bulk of observations are zeros. Deaton
and Cartwright (2018) warns that these asymmetric distributions of treatment effects pose
threats to significance testing. Meager (2019) investigates the returns to offering microcredit
across seven different studies, in which the bulk of the returns accumulate to top income
(75th percentile of income) individuals.

A common next step to estimating average treatment effects in the presence of fat tails is
to estimate quantile treatment effects. Quantile treatment effects estimators offer a way to
explore how treatment effects vary within the population. In particular, we would expect
the imprecision to occur in the right tail of our outcome distributions, since the left tail is
censored at zero for inputs and outputs. Figures 5 and 9 provide a visual depiction of the
quantile treatment effects across all outcomes, while Table 4 hones in on output and yield
alone. Figure 5 provides a clear indication that there is both higher impacts of the inter-
vention in the upper quantiles of the outcomes in levels as well as greater imprecision of the
estimated impact in the upper tails. Figure 9, which presents the impacts on outcomes per
acre, indicates that the larger effect sizes in the upper tails are tempered when the outcomes
are scaled by acres, suggesting that larger farmers can potentially benefit more than smaller
farmers from added DG messaging. However, once we control for farm size, the messaging
does not seem to add any additional benefit beyond the main DG videos. What does not
change is that the estimates are still more imprecisely measured in the upper quantiles.

In Table 4, we compare the effects across several different methodologies: the average treat-
ment effect, quantile effects, and the weighted average quantile (WAQ) effect (Athey et al.,
2023) for several different variations of the main outcome of interest: output, yield, and
transformations of output as well as yield by the inverse hyperbolic sine (IHS) transforma-
tion. Note that the sub-treatment effects in this table are not relative to the main DG
only arm, but rather, are estimated as mutually exclusive treatments. This is for ease of
comparison between the treatment effects across the various methods. The WAQ effect esti-
mator (WAQ) allows for aggregation of treatment effects where the weights can differ across
quantiles (Athey et al., 2023). The IHS transformation is used to transform right-skewed
variables, which may include zero or negative values (Aihounton and Henningsen, 2021;

15A student t with normality parameter 30 is approximately normal.
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Bellemare and Wichman, 2020). In our case, both yield and output contain zero values.
Because of interpretation issues (Aihounton and Henningsen, 2021; Chen and Roth, 2023),
we do not transform the coefficients or interpret the magnitude of the treatment effects.
Overall, the results show that the DG + both treatment arms exhibit economically and
statistically significant effects on output and transformed output for the 25% and 50% quan-
tiles, a 6-16% increase over baseline, and the DG without messaging as well as DG + both
treatment arms consistently exhibit economically and statistically significant effects on yield
and transformed yield for the 50% quantiles, a 25-31% increase over baseline. The WAQ
estimator confirms that the observations above the median are particularly noisy and puts
little weight on the effects in the upper tails to estimate a more precise average treatment
effect. Figure 8 depicts the weights for the WAQ treatment effect on output per farm and
per acre. The WAQ estimates in Table 4 largely confirm that the first and last arms are
statistically significant, particularly for the transformed outcomes (although not for output
in levels, which exhibits more dispersion than yields).

6 Bayesian Program Effects

A Bayesian approach does not foundationally rely on assuming a thin-tailed data generating
process in order to generate asymptotic normality of estimators. Rather, the researcher can
specify an appropriate generating process for the data at hand, combined with a set of priors
on the parameters that govern this data generating process. Another benefit of a Bayesian
analysis is that it produces a posterior distribution of the average treatment effects rather
than a single point estimate of the treatment’s effect. This can be a more informed manner
of studying interventions that are applied to fat tailed data, when treatment effects exhibit
wide confidence intervals in a frequentist design.

In this section, we revisit the estimation of our average treatment effects using a Bayesian
hierarchical framework and compare the results found in the previous sections. Such a com-
parison allows us to highlight the differences between approaches. Given that we did not
specify priors before the study took place we use two different sets of priors to describe our
data. The first set, as suggested by Kruschke (2013), are normal priors with large standard
deviation for µ, broad uniform priors for σ, and a shifted-exponential prior for the normality
parameter ν. The latter spreads “prior credibility fairly evenly over nearly normal and heavy
tailed data” Kruschke (2013). We use a t-distribution to model our sample, and generate
vectors of random draws from the posterior distribution of the center (µ) and spread or scale
(σ) of the distribution, as well as a measure of normality (ν). The normality parameter, ν,
corresponds to the degrees of freedom of the t-distribution in the context of sampling distri-
butions (Kruschke, 2013). The procedure uses a Bayesian MCMC process implemented in
JAGS (Plummer 2003).16 The second set of priors are more conservative, with much smaller
variance than the first.

16The library used for the Bayesian analysis can be found at https://rdrr.io/cran/BEST/man/

BEST-package.html
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Let M and S be the mean and the standard deviation of the pooled data. The implementation
then follows Meredith and Kruschke (2021). For k = 0 (control), 1 (treatment), the ith
individual’s outcome y is given by:

yk,i = µk + σk ∗ tk,i, where
tk,i ∼ t(v)

µk ∼ N(M, 1000 ∗ S)
σk ∼ U [S/1000, S ∗ 1000]

ν − 1 ∼ Exp(1/29), ν >= 1

(2)

Tables 5 and 8 report results from the above priors of 100,000 draws from the posterior
distribution of the average treatment effect, µ1 − µ0 for each arm on each outcome variable.
Note that, as is the case with Table 4, the sub-treatment effects reported in Tables 5 and 8
estimate mutually exclusive (and not relative) effects of the sub-treatment arms. The 95%
Highest Density Interval (HDI) indicates the most likely estimated parameter values that
comprise 95% of the distribution of possible effects. The Prob < 0 or > 0 is the probability
that the true effect is less than or greater than zero. Note that the treatment arms are mu-
tually exclusive in this estimation, unlike in Section 4.1, in which the subtreatment effects
were estimated relative to the main treatment arm. The second set of priors that we apply
are more conservative and differ in that the variance of the mean and the standard deviation
is 5*S, and ν ∼ Gamma(30, 30), ν >= 1. The main findings are unchanged from the results
described here with broad priors and we report the results from the second set of priors in
Tables A.5 and A.6.

Beginning with adoption, as with the average treatment effect estimator, zero is the most
likely effect of the DG across all arms on adoption. Looking at inputs and outputs, as
with the quantile regressions, the main arm without messaging and the DG + both arm
produce the most favorable results in terms of output (yield), 30.4 kilograms per farm (228
kgs/acre) and 75 kilograms per farm (156 kgs/acre) increase compared to standard training,
respectively. The probability that the true value is greater than zero ranges from 94-100%.
Profits are also highest for these treatment arms. In most cases expenditures and labor days
also declined, except for labor days when looking at yields. Thus, compared to the control
group of SRI alone, DG led to increases in productivity and zero is not the most likely effect
of the main DG treatment or the DG treatment with both messages. Overall, the mean
of the Bayesian effect sizes are smaller than the initial average treatment effect estimates.
Interestingly, the mean of the Bayesian posterior for output under DG + both, 75 kilograms
per farm, lies in between the 25% (40 kgs) and 50% quantile (100 kgs) regressions effects for
output. Similarly, the mean of the Bayesian posterior for yield, 228 kilograms per acre for
DG without messaging and 156 kilograms per acre for DG + both, lies in between the 25%
and 50% quantile (100 kgs) regressions for yields.

Overall, the Bayesian estimation paints a clear picture that DG provides additive benefits
to traditional NLRM training alone resulting in a 5-12% increase in output, 12-18% increase
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in yield and 9-24% increase in estimated profits. Figures 6 and 10 graph the treatment
effects from estimating the Bayesian model compared to average treatment effects. Note
again, here the estimated treatment effects are for mutually exclusive treatment arms. The
Bayesian estimation displays smaller and more precisely measured effects than the average
treatment effects. In terms of inputs, the results differ by output per farm versus output
per acre. The results indicate that per farm labor days and expenditures likely decreased
for DG no messaging and DG + both, however, per acre, it does not appear that inputs
declined, but yield, nevertheless, did. Our interpretation here is that if large farmers are
gaining more in terms of output per farm they may also have increased their inputs more
than small farmers. Once we control for the size of the farm this increase in inputs disappears.

7 Discussion

We focus on three main points: the economic and statistical significance of the intervention
on the main outcomes, output and yield, given each methodology; the mechanism of the
change on output and yields given the lack of effect on adoption of the SRI practice; and
the effect of the main DG arm without messaging compared to DG with labor and/or self-
efficacy messages.

First, the above results from our intervention comparing average treatment effects, quantile
regressions, weighted quantile regression and a Bayesian hierarchal model point to positive
impacts on output per faarm and per acre (yields). Both the main treatment arm of DG
without messaging (for yields) and DG with both the labor and self-efficacy messages (for
yields and output) have economically and statistically significant impacts. The percentage
increase over mean starting values are in the range of 6 - 30%, and this largely depends on
the outcome (output versus yields) and method used: quantile regression, Bayesian model or
weighted quantile regression. We look at both output and yields. We are interested in how
the average farm fairs with the DG intervention (output), but we also want to control for the
size of each farm, which can help with the precision of estimate treatment effects. If we look
at output alone, the DG + both arm has both the largest economic and statistically signif-
icant effects. The median regression shows a 16% increase, and the mean of the Bayesian
posterior, a 12% increase. The WAQ estimates a 6% increase, which is not statistically
significant for output in levels, but is when output is transformed by the inverse hyperbolic
sine function, which suggests that the non rice growers may be driving that difference. If
we focus in on yields and the DG no messaging and DG + both arm, quantile regressions
show a 18-22% increase, the WAQ estimator shows a 6-8% increase, and the mean of the
Bayesian posteriors 12-18% increase, all statistically significant or non-zero. Thus, what the
three methodologies show is that the imprecisely measured ATE is likely due to imprecisely
measured treatment effects in the upper tails.

We saw no movement on the adoption index but observed meaningful economic impacts on
output and yield, albeit imprecisely measured. We argue that this is because the training
videos encourage the same adoption of practices that the control was exposed to – which are
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relatively fixed for SRI. Rather, the purpose of DG aim is to improve the execution of each
task. To the first point, Barrett et al. (2021) defines adoption as having practiced at least
three of the six key SRI practices on at least one plot of land, which farmers did not report
doing. Barrett et al. (2021) lists those practices as “transplanting younger (twenty-day-old)
seedlings; (b) transplanting one to two seedlings per hill; (c) wide spacing of transplanted
seedlings (25 x 20 cm); (d) providing organic matter amendments (e.g., compost, manure)
to the soil; (e) following the AWD method of irrigation; and (f) mechanically weeding at
regular intervals.” Both treatment and control groups report having adopted about one
practice among the six SRI practices on average. Regarding the second point, since imple-
mentation of the practice is a key objective of DG, we might expect a change in the variance
of outcomes in addition to the means, which we can quantify with the posterior estimates
from the Bayesian model. We find that the mode of the variance of the posterior estimates
increases for output and yields in addition to the means. For example, the difference in the
modes of the posterior standard deviation estimates of treatment versus control for the DG
no messaging arm on output (yield) is 42.6 (81.9), and 100% (94%) of the 95% HDI is above
zero, meaning that the standard deviation or variance of the output outcome increased. For
the DG + both outcome the latter figure is 74.6 (56.5) and 100% (77%) of the 95% HDI
is above zero. For the DG + labor and DG + self-efficacy arms these effects are less pro-
nounced.

Regarding the effects on intermediate inputs, both treatment and control groups received the
same quantitative information regarding input use, and hence, we see almost no movement
on inputs in the quantile regressions. The only instances where we a see a small drop in labor
and expenditures is for the DG + self-efficacy arm per farm, which is consistent with our
findings from the Bayesian model (results available upon request). We attribute this to the
videos and repetition helping farmers better target their labor needs compared to standard
extension training alone.

While we might not expect to see differences in input use between farmers who receive stan-
dard extension (the control) and farmers who receive standard extension with DG (treated
groups) since both groups received the same information on SRI, we should expect to see a
difference in input use between the year previous to the intervention. We check whether the
control group arm’s use of inputs at midline is the same as their responses regarding inputs
in the previous year. Table 7 breaks down the costs of SRI by input and practices. The
Control Group Trend row summarizes information gathered at baseline about the previous
year. The Control Group Mean, Year One summarizes information gathered in the first year
of the intervention after the intervention was implemented. We know that SRI traditionally
requires less irrigation and fertilizer as inputs, and requires more labor for land preparation,
transplantation and weeding. Indeed, we see that the average differences in the control group
from Baseline to Year One are statistically significant in all of the latter inputs and practices.
In addition, the number of transplantation days increase from 9.8 days to 24.5 days per farm
or 14.7 days, statistically significant at the 1% level. This is also in line with the one extra
day required for transplantation per katha (1 katha = 0.04 acres) (which is relayed in our
labor message). Namely, the average acreage towards rice is 0.8 acres and the median is 0.4,
so an extra day per katha would translate to 10-20 more days of labor for the average farm-
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ers, which is about the increase we see between the previous year (retrospectively collected)
and the year after which SRI was introduced to both the control and treated groups. Of
course, these comparisons are not causally determined, since our entire sample was trained
in SRI, but it does provide some indication that inputs and labor changed in a way that
is consistent with farms having adopted SRI across all treatment arms, including the control.

Finally, we asked questions that tested participants’ knowledge of SRI-specific adoption prac-
tices, but only among the farmers who self-reported that they fully adopted SRI, which was
only 13% of our treated sample. Among the treated, we saw a weakly statistically significant
increase of 4% of self-reported adopters by Year One for the main treatment arm, but we
know that these adopters can only partially, but not fully, explain the gains in output. Many
other farmers who do not report full adoption of SRI saw gains as well. This is because, as
noted earlier, SRI is not a fixed technology – farmers can adopt parts of the practices on
parts of their field (Glover, 2011). Other studies also show that when farmers are exposed
to SRI they only adopt 1-2 practices out of the 6 SRI practices (Barrett et al., 2021). Thus,
we suspect that many farmers – control and treated – who are reporting having grown tra-
ditional rice, did adapt aspects of SRI practices (as evidenced by the changes in inputs and
labor expenditures for the Control Group Trend).

Regarding the observed differences in the effects of the treatment arms, the primary im-
provements in output and yield are attributable to the DG no messaging arm and the DG +
both messages arm. Conversely, the DG + self-efficacy arm and DG + labor arm exhibited
no statistically significant effects. These findings imply that the impacts of the additional
messages are not simply additive. Rather, they are effective through their complementar-
ity with one another. A possible explanation for this result stems from the literature on
self-efficacy. Despite self-efficacy being positively associated with goal choice, effort and
persistence, Bandura (1985) notes that self-efficacy can be negatively correlated with plan-
ning and that some amount of self-doubt is, in fact, good in preparatory training contexts.
This was later experimentally confirmed by Vancouver and Kendall (2006). Vancouver and
Kendall (2006) shows that when individuals have high self-efficacy they report using less
study time, and subsequently exhibit lower performance on exams. Thus, while self-efficacy
may be important for setting goals, higher self-efficacy can reduce preparedness and skill
acquisition for goal attainment, particularly in the training and learning setting. Thus,
in our setting self-efficacy could have backfired without adequate preparedness. However,
when the messages are combined, the two work in tandem to both prepare farmers of changes
in their labor inputs as well as to encourage them that they will be able to complete the work.

In summary, what DG delivers is repeatable and standardized information, in addition to
a means for adding on more nuanced messages in a quality controlled manner. Thus, while
we should not expect inputs and adoption numbers to change between control and treated
groups we should expect improvements in output per farm and output per acre if DG im-
proves farmers’ implementation of SRI. In our specifications that address our fat tailed data,
we do indeed see a statistically significant change in our output variables for the 25% quantile
and median quantile. And the means of the posterior estimates from the Bayesian hierarchal
model also demonstrate positive impacts along the same magnitudes.
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8 Disperse Outcomes and Power

Disperse survey outcomes such as profits, output, yield, and expenditure among poor house-
holds are not uncommon in economics. Such dispersion could be because the data generating
process is fat tailed with genuine extreme values or because of measurement error (Gollin
and Udry, 2021). For example, Okorie et al. (2023) shows that the majority of crop yields
across six different East African countries exhibit heavy tails and finds that a power law dis-
tribution best captures the upper tails. In the case of measurement error, potential solutions
are to increase the frequency of collecting data rather than one retrospective question that
covers decisions made over the course of several months (McKenzie, 2012). Gollin and Udry
(2021) formally studies the contributions of input heterogeneity (including land quality),
firm level shocks, measurement error and misallocation of inputs as sources of dispersion in
yield in Uganda and Tanzania. They conclude that misallocation has been attributed too
much importance in explaining dispersion in household level farm productivity: “Late-season
production shocks and measurement error in factors of production and output together can
account for about half to two-thirds of the variance in log productivity residuals” (Gollin
and Udry, 2021).

Given the disperse outcomes and disperse treatment effects in the right tails of the data, it is
natural to consider that imprecisely measured average treatment effects could be remedied
by having had a larger sample size ex-ante. Here we consider that notion via simulation. We
consider what sample size we would have needed to achieve 80% power using the mean of
the posterior distributions from the Bayesian analysis to detect a known effect size in out-
put (yields), 30 kilograms per farm (156 kgs/acre); with a normality parameter of 2.0 (2.0);
where the mode of the standard deviation in the control is 272 (647) and in the treatment
316 (702). In Figures 7 and 11, each data point is the average of 1000 simulations given a
sample size ranging from 1000 to 25000. As we increase N for each simulation of the control
and treated data we store the estimated effect size, and statistically significant effect sizes.

In Figure 7 upper left, 80 percent power is only achieved with 25,000 observations for out-
put, and in Figure 11, 3,000 for yield. The bottom left graphs are a depiction of the fact
that under-powered studies typically will exhibit overstated effect sizes (Gelman and Carlin,
2014). Figures 7 and 11 show that with a known true effect size for output (yield) of 30 kgs
(156 kgs/acre), sample should increase to 25,000 (8,000) observations, a size that was not
feasible in our (and many other) contexts. Thus, the simulation is an important reminder
that increasing sample sizes to a point where we can recover the true effect size is potentially
infeasible and potentially not the most cost-efficient approach to studying program impacts
where the outcomes are fat tailed.
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9 Cost-Effectiveness

The marginal cost of the DG arm is 96 Rps per farmer.17 The marginal benefits vary
widely as discussed above, but are consistently well above the marginal cost. For the DG
with no messaging subtreatment arms, marginal benefits are 5224 Rps, 1282 Rps, and 590
Rps from the average, median, and Bayesian approaches, respectively. The same for the
DG+both messaging subtreatments are 2386 Rps, 2026 Rps, and 1620 Rps. The equivalent
for the arms with exactly one of the messaging arms, as discussed above, are not statistically
significantly different than zero.18 Thus the DG arm (as long as it includes the messaging,
or no messaging) is cost-effective relative to the control (i.e., human-only extension), in that
the improvement in profits, irrespective of which estimation is used, exceeds the marginal
cost.

10 Conclusion

We present experimental evidence on the effects of a video-based intervention that trains
female farmers in the presence of an already existing traditional extension training infras-
tructure, the National Rural Livelihood Mission (NRLM). We worked with a large non-profit
organization, Digital Green, in Bihar, India, which has reached over 2.3 million farmers
through their video aids.

As is common with agricultural data, our outcomes exhibit fat tails (Okorie et al., 2023),
which make average treatment effect estimates unreliable. This is reflected in the large and
imprecisely measured average treatment effects of our intervention. Quantile regressions
show that this imprecision is driven by the upper tails of the outcomes. A more recent
technique, weighted quantile regressions (Athey et al., 2023), shows that the observations
above the median in our data are particularly noisy and puts little weight on the effects in
the upper tails to estimate a more precise average treatment effect.

One might think that a larger sample size would remedy the problem of our imprecisely
measured average treatment effects. However, if the normality parameter, which controls
the heaviness of the tails in a t-distribution, of the data generating process is too small
then the variance of the data is essentially infinite. Any estimation of that variance using
sample data will be biased, and extreme values will still be common enough that they can
meaningfully affect the mean. We show through simulation that the increase in the sample
size necessary to power a study like ours would be infeasible - both because it could exceed
the actual population size and/or because it would be prohibitively costly to collect. In
summary, we show that when data exhibit fat tails average treatment effects can obfuscate

1767 Rps per farmer for the VRP (each VRP trains 10 farmers and costs 670 Rps) plus 29 Rps per farmer
for the video screening (each video screening trains 3 farmers and costs 285 Rps); thus total marginal cost
= 67+29 = 96 Rps per farmer. This 96 Rps per farmer is on top of the 285 Rp per farmer base cost of the
training, i.e., the cost of the control group, which is irrelevant for the cost-effectiveness calculation for DG.
The 285 Rps per farmer derived as follows: 1050 Rps for a VRP for 10 people, thus 105 for 1 VRP and 180
Rps per farmer in training costs; 105+180=285 per farmer.

18Bayesian posteriors are displayed in Figure 6.
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meaningful impacts. Alternative methodologies should be considered that can accommodate
the underlying data patterns, address data dispersion, or estimate treatment effects across
the entire data distribution.

We use two different methods to address fat tails, quantile regressions and a Bayesian hierar-
chical model. Quantile regressions allow us to estimate how different points of the outcome
distribution change with the intervention, whereas a Bayesian hierarchical model allows us
to study the entire probability distribution of the treatment effect while accounting for fat
tails via priors. The results from Bayesian estimation with varied priors points to non zero
effects, where the mean of the posterior distributions are of the same order of magnitude
as the point estimates between the 25% and 50% quantile regressions. Overall, the effect
sizes range from a 6-16% increase over baseline outcomes for output, and a 25-31% increase
over baseline outcomes for yields. We find that the added messages regarding labor require-
ments and self-efficacy, issues highlighted by the literature for adoption of SRI and of new
technologies more generally, had a complementary effect. The DG arms with just one of the
messages - labor or self-efficacy - did not have statistically significant impacts, and adding
the self-efficacy message alone actually reduced the effectiveness of DG. We argue that the
self-efficacy message could potentially lead farmers to be confident yet under prepared with-
out the added information of the labor message. An area for future research is to unpack
the mechanism of the self-efficacy message and understand if there is self-efficacy content
that would not detract from the effects of the main treatment arm, and with what type of
information messages it can be effectively paired. This should also be studied in the context
of self help groups, and whether self help groups help to activate the effects of self-efficacy
messaging where fellow farmers or VRPs may serve as reference points.

We find little to no effects of DG on inputs - labor and expenditures - both in quantile
regressions and the Bayesian model. We attribute this to both treatment and control being
trained in SRI via standard extension training. Only the treatment group received repeated
information via video. There is also no movement in overall adoption from the DG inter-
ventions compared to the control group. There are several reasons for why adoption can be
low and yet there are impacts on output and yields. First, in addition to the control group
having also received SRI training, we also did not capture adoption adequately. First, we
only asked respondents who fully adopted SRI to reply to questions about SRI practices, and
yet, partial adoption was likely and is traditionally common for SRI farmers. In particular,
our questions related to SRI practices were answered by very few farmers (only 13% among
the treated), and were predicated upon a farmer saying that she adopted SRI fully. However,
we suspect that many farmers adopted only aspects of SRI and only on portions of their
plots. Future survey questions on SRI adoption should be constructed in such a way that
they can be posed to all farmers. This would also help us determine which aspects of SRI
are adopted initially, and what practices are more likely to be disadopted over time. Second,
we did not adequately monitor the degree to which farmers correctly implemented practices,
which is, ultimately, what it means to adopt SRI. Our adoption index is constructed from a
series of questions about the practices and correct responses associated with SRI. Farmers
in both groups may report adopting the practices, but DG could help them improve in their
execution of practice, and this is something our index cannot capture. Such a verification
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would require either real time on the ground verification or verification through imagery of
the plots, which is an area for future research.

References

(2015). Chapter 3: Thinking with mental models: Spotlight 2: Entertainment education. In
World Development Report 2015: Mind, Society, and Behavior.

(2021). Relief from usury: Impact of a self-help group lending program in rural india. Journal
of Development Economics 148, 102567.

Abate, G. T., T. Bernard, S. Makhija, and D. J. Spielman (2023). Accelerating technical
change through ict: Evidence from a video-mediated extension experiment in ethiopia.
World Development 161, 106089.

Adams, R., B. McCarl, K. Segerson, C. Rosenzweig, K. Bryant, B. Dixon, R. Conner,
R. Evenson, and D. Ojima (1999). The Economic Effects of Climate Change on US Agri-
culture, Chapter The Impact of Climate Change on the United States Economy. Cam-
bridge, UK: Cambridge University Press.

Aditya, K., S. Subash, K. Praveen, M. Nithyashree, and N. A. S. Bhuvana (2017). Awareness
about minimum support price and its impact on diversification decision of farmers in india.
Asia and the Pacific Policy Studies 4 (3), 514–526.

Aihounton, G. B. D. and A. Henningsen (2021, 10). Units of measurement and the inverse
hyperbolic sine transformation. The Econometrics Journal 24 (2), 334–351.

Alem, Y., H. Eggert, and R. Ruhinduka (2015). Improving welfare through climate-friendly
agriculture: The case of the system of rice intensification. Environmental and Resource
Economics 62 (2), 243–263.

Anderson, J. and G. Feder (2007). Agricultural extension. In Handbook of Agricultural
Economics, Volume 3, pp. 2343–2378. Elsevier.

Anderson, M. L. (2008). Multiple Inference and Gender Differences in the Effects of Early
Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training
Projects. Journal of the American Statistical Association 103 (434), 1481–1495.

Athey, S., P. J. Bickel, A. Chen, G. W. Imbens, and M. Pollmann (2023). Semi-parametric
estimation of treatment effects in randomised experiments. Journal of the Royal Statistical
Society Series B: Statistical Methodology (qkad072).

Azevedo, E. M., Deng, J. L. M. Olea, J. Rao, and E. G. Weyl (2020). A/b testing with fat
tails. Journal of Political Economy 128 (12), 4614 – 000.

Bandiera, O. and I. Rasul (2006). Social Networks and Technology Adaption in Northern
Mozambique. The Economic Journal 116 (514), 869–902.

25



Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psycho-
logical Review 84 (2), 191–215.

Bandura, A. (1985). Social foundations of thought and action. Englewood Cliffs, NJ: Prentice
Hall.

Bandura, A., W. H. Freeman, and R. Lightsey (1999). Self-efficacy: The exercise of control.
Springer.

Banerjee, A., S. Barnhardt, and E. Duflo (2017). Movies, margins, and marketing: Encour-
aging the adoption of iron-fortified salt. In D. A. Wise (Ed.), Insights in the Economics
of Aging, pp. 285–306. Chicago, IL: University of Chicago Press.

Banerjee, A., E. La Ferrara, and V. H. Orozco-Olvera (2019, 7). The entertaining way to
behavioral change: Fighting HIV with MTV. Working Paper 26096, National Bureau of
Economic Research, Cambridge, MA.

Barrett, Christopher B.and Islam, A., A. M. Malek, D. Pakrashi, and U. Ruthbah (2021).
Experimental Evidence on Adoption and Impact of the System of Rice Intensification.
American Journal of Agricultural Economics 104 (1), 4–32.

Beaman, L., A. BenYishay, J. Magruder, and A. M. Mobarak (2021, June). Can network
theory-based targeting increase technology adoption? American Economic Review 111 (6),
1918–43.

Bellemare, M. F. and C. J. Wichman (2020). Elasticities and the inverse hyperbolic sine
transformation. Oxford Bulletin of Economics and Statistics 82 (1), 50–61.

BenYishay, A. and A. M. Mobarak (2018, 07). Social Learning and Incentives for Experi-
mentation and Communication. The Review of Economic Studies 86 (3), 976–1009.

Berg, G. and B. Zia (2017, 02). Harnessing Emotional Connections to Improve Financial
Decisions: Evaluating the Impact of Financial Education in Mainstream Media. Journal
of the European Economic Association 15 (5), 1025–1055.

Berkhout, E., D. Glover, and A. Kuyvenhoven (2015). On-farm impact of the system of rice
intensification (sri): Evidence and knowledge gaps. Agricultural Systems 132, 157–166.

Bezabih, M., R. Ruhinduka, and M. Sarr (2016). Climate change perception and system of
rice intensication (sri) impact on dispersion and downside risk: A moment approximation
approach. Technical Report November 2016, Grantham Research Institute on Climate
Change and the Environment Working Paper No. 256.

Bhoi, B. B., S. Kundu, V. Kishore, and D. Suganthi (2019). Supply chain dynamics and food
inflation in india. Technical Report Oct 11, 2019, Department of Economic and Policy
Research (DEPR), Reserve Bank of India.

Bjorvatn, K., A. W. Cappelen, L. H. Sekei, E. O. Sørensen, and B. Tungodden (2020). Teach-
ing through television: Experimental evidence on entrepreneurship education in tanzania.
Management Science 66 (6), 2308–2325.

26



Bursztyn, L., F. Ederer, B. Ferman, and N. Yuchtman (2014). Understanding mechanisms
underlying peer effects: evidence from a field experiment on financial decisions. Econo-
metrica 82 (4), 1273–1301.

Chen, J. and J. Roth (2023, 12). Logs with Zeros? Some Problems and Solutions. The
Quarterly Journal of Economics , qjad054.

Ches, S. and E. Yamaji (2015). Labor requirements of system of rice intensification (SRI)
in Cambodia. Paddy and Water Environment 14 (2).

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao,
W. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. Weaver, and M. Wehner
(2013). Long-term Climate Change: Projections, Commitments and Irreversibility. Cam-
bridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Compte, O. and A. Postlewaite (2004). Confidence-enhanced performance. American Eco-
nomic Review 94 (5), 1536–1557.

Conley, T. G. and C. R. Udry (2010, March). Learning about a new technology: Pineapple
in ghana. American Economic Review 100 (1), 35–69.

Coville, A., V. Di Maro, F. Dunsch, and S. Zottel (2019, June). The nollywood nudge: An
entertaining approach to saving. Working Paper No. 8920, World Bank Policy Research.

Crépon, B., F. Devoto, E. Duflo, and W. Parienté (2019). Verifying the internal validity of
a flagship rct: A review of Crépon, Devoto, Duflo and Parienté: A rejoinder. Technical
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Figure 3: Total Monthly Rainfall by Year
Study Years = 2014 and 2015
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Figure 4: Distribution of Outcome Variables
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Notes: Each plot represents a histogram of our outcomes in year one (excluding the adoption index) with a
kernel density plot overlaid.
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Table 1: ITT Treatment Effects on Farm Outcomes

VARIABLES Adoption Labor Expenditures Output Profits
Index Days (Rps) (Kgs) (Rps)

Panel A: Year One, Any DG (1) (2) (3) (4) (5)
Any DG -0.00 3.83 -130 124 1,953

(0.98) (0.28) (0.79) (0.07) (0.16)
[0.98] [0.47] [0.98] [0.35] [0.4]

Panel B: Year One, DG by Sub-Treatment
DG no messaging -0.02 4.82 -539 255 5,184

(0.76) (0.37) (0.41) (0.04) (0.02)
[0.87] [0.74] [0.75] [0.20] [0.20]

DG + labor 0.02 1.16 984 -170 -5,105
(0.84) (0.87) (0.24) (0.25) (0.04)
[0.87] [0.87] [0.63] [0.63] [0.20]

DG + self-efficacy 0.03 -7.22 294 -248 -5,210
(0.71) (0.23) (0.70) (0.07) (0.04)
[0.87] [0.63] [0.87] [0.28] [0.20]

DG + both 0.03 1.71 340 -111 -2,608
(0.69) (0.81) (0.64) (0.46) (0.33)
[0.87] [0.87] [0.87] [0.77] [0.73]

Observations 2,156 2,156 2,156 2,156 2,156
Control Group Mean, Year One 1.054 41.28 6,967 635 6,793
Control Group Trend -0.36 -3104 32.70
Panel C: Year Two, Any DG (1)‡ (2) (3) (4) (5)
Any DG [ 0.02] 1.42 -1,450 88.5 2,851

[ (0.57)] (0.75) (0.44) (0.39) (0.33)
[0.75] [0.59] [0.59] [0.59]

Panel D: Year Two, DG by Sub-Treatment
DG no messaging [ 0.04] 1.77 -1,301 106 3,823

[ (0.47)] (0.80) (0.50) (0.54) (0.34)
[ [0.96]] [0.96] [0.96] [0.96] [0.96]

DG + labor [ 0.00] 0.90 420 87.8 947.48
[ (0.96)] (0.91) (0.51) (0.66) (0.82)
[ [0.96]] [0.96] [0.96] [0.96] [0.96]

DG + self-efficacy [ -0.02] -2.32 -471 -26 -1,968
[ (0.76)] (0.77) (0.40) (0.89) (0.57)
[ [0.96]] [0.96] [0.96] [0.96] [0.96]

DG + both [ -0.05] 0.02 -501 -119 -2,650
[ (0.31)] (1.00) (0.34) (0.50) (0.45)
[ [0.96]] [0.96] [0.96] [0.96] [0.96]

Observations [ 2,061] 2,061 2,061 2,061 2,061
Control Group Mean, Year Two [ 0.158] 49.61 5,722 747 8,666

Standard errors, clustered at the village level, p-values reported in parentheses and
False Discovery Rate (FDR) pvalues reported in brackets Anderson (2008). All vari-
ables are measured per farm. Adoption Index is an index ranging from 0-5, which
reflects whether the farmer implemented the practices broken down in Table A.3 ac-
cording to SRI principles. Labor Days represents the total labor days (both family
and hired labor) on cleaning, pesticide, threshing, and harvesting, which are the ac-
tivities for which we have responses in both Year One and Year Two. Expenditures
represents the common set of total expenditures between Year One and Year Two
spent on inputs including fertilizer, machine rental and irrigation. In Year Two we
did not conduct a midline survey, thus Expenditures reflect endline (harvest) costs
only. Output is total kilograms of rice produced on the farm. Estimated Profit
is a constructed variable and is equal to harvest storedxpr + harvest soldxpf - Ex-
penditures - Hired Labor, where pf is the reported farm gate price at which a
farmer sold her rice, and pr is the estimated retail price each year (25.6 Rps/kgs
and 27.8 Rps/kgs from (Bhoi et al., 2019)). For the full set of expenditures surveyed
by year see Table 7. Control Group Trend is Year One’s control group mean out-
come minus the Baseline’s control group mean outcome. We control for whether a
household’s total self-reported farm output aligns with the aggregate of their reported
sold, consumed, stored, and shared paddy within a margin of error of 100 kilograms
throughout. ‡Questions about general adoption practices were not asked in the final
endline.



T
ab

le
2:

IT
T

T
re
at
m
en
t
E
ff
ec
ts

on
In
p
u
t
C
om

p
on

en
ts

p
er

F
ar
m

(R
p
s)

In
p
u
ts

H
ir
ed

L
ab

or
E
x
p
en
se
s

S
R
I
R
el
ev
an

t
A
ll
O
th
er

S
R
I
R
el
ev
an

t
A
ll
O
th
er

V
A
R
IA

B
L
E
S

S
ee
d

Ir
ri
ga
ti
on

F
er
ti
li
ze
r

M
ac
h
in
er
y

L
iv
es
to
ck

L
an

d
p
re
p

T
ra
n
sp
la
n
ta
ti
on

W
ee
d
in
g

N
u
rs
er
y

W
at
er

p
u
m
p
in
g

C
le
an

in
g

P
es
ti
ci
d
e

T
h
re
sh
in
g

H
ar
ve
st
in
g

P
an

el
A
:
Y
ea
r
O
n
e,

A
n
y
D
G

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

A
n
y
D
G

-8
.6
6

-2
6.
08

-8
4.
93

-1
9.
90

0.
14

-8
5.
06

13
8.
94

-1
89
.7
7

1.
71

-9
.9
2

29
.6
4

-0
.1
1

11
9.
03

92
.3
2

(0
.9
2)

(0
.8
2)

(0
.7
1)

(0
.9
5)

(0
.9
9)

(0
.4
3)

(0
.5
3)

(0
.2
6)

(0
.9
4)

(0
.7
5)

(0
.4
1)

(0
.9
9)

(0
.2
7)

(0
.6
1)

P
an

el
B
:
Y
ea
r
O
n
e,

D
G

by
S
u
b-
T
re
at
m
en
t

D
G

n
o
m
es
sa
gi
n
g

-1
7.
17

-5
1.
10

-1
58
.2
6

-3
29
.9
2

-1
8.
70

-1
30
.9
3

-2
62
.4
9

-1
46
.9
7

-1
9.
39

-1
6.
00

49
.5
4

15
.1
1

60
.9
4

12
6.
03

(0
.8
9)

(0
.7
4)

(0
.5
5)

(0
.3
7)

(0
.2
7)

(0
.3
4)

(0
.2
3)

(0
.5
8)

(0
.4
3)

(0
.6
9)

(0
.2
9)

(0
.5
3)

(0
.6
6)

(0
.6
7)

D
G

+
la
b
or

-3
1.
91

30
1.
81

-1
6.
93

69
9.
41

15
.1
9

18
1.
42

55
2.
39

-1
35
.4
7

11
.4
6

-2
7.
87

-6
2.
05

-3
4.
39

11
0.
33

12
3.
30

(0
.8
0)

(0
.1
9)

(0
.9
4)

(0
.1
7)

(0
.4
6)

(0
.2
6)

(0
.0
4)

(0
.5
7)

(0
.6
6)

(0
.4
8)

(0
.2
2)

(0
.1
3)

(0
.5
7)

(0
.7
6)

D
G

+
se
lf
-e
ffi
ca
cy

-2
7.
28

-8
7.
49

7.
51

37
4.
50

5.
12

10
4.
46

73
5.
31

-3
.9
1

50
.7
7

51
.7
0

-2
7.
45

2.
50

9.
05

-2
21
.1
5

(0
.8
5)

(0
.6
0)

(0
.9
8)

(0
.4
5)

(0
.7
5)

(0
.4
8)

(0
.2
3)

(0
.9
9)

(0
.4
0)

(0
.4
3)

(0
.6
3)

(0
.9
3)

(0
.9
5)

(0
.4
9)

D
G

+
b
ot
h

86
.0
7

-1
09
.9
5

28
2.
79

16
7.
32

51
.5
4

-9
2.
13

32
1.
66

-2
9.
69

22
.4
4

2.
31

8.
35

-2
6.
95

10
5.
63

-4
2.
36

(0
.5
4)

(0
.5
0)

(0
.4
0)

(0
.6
5)

(0
.0
4)

(0
.4
2)

(0
.2
0)

(0
.9
0)

(0
.4
5)

(0
.9
6)

(0
.9
1)

(0
.2
3)

(0
.6
4)

(0
.9
0)

O
b
se
rv
at
io
n
s

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

2,
15
6

C
on

tr
ol

G
ro
u
p
M
ea
n
,
Y
ea
r
O
n
e

1,
03
5

1,
45
8

1,
74
2

3,
76
7

53
.6
8

63
2.
4

1,
84
7

1,
26
8

14
1.
8

14
7

16
7.
9

10
3.
8

49
7.
9

1,
01
0

C
on

tr
ol

G
ro
u
p
M
ea
n
,
B
as
el
in
e

1,
07
2

3,
12
2

3,
84
0

3,
18
6

33
.8
3

29
2.
6

53
8.
6

41
1.
3

12
3.
1

98
.7
2

90
.1
7

62
0

C
on

tr
ol

G
ro
u
p
T
re
n
d
p
va
lu
e

(0
.8
6)

(0
.0
0)

(0
.0
2)

(0
.1
7)

(0
.2
6)

(0
.0
0)

(0
.0
0)

(0
.0
0)

(0
.4
4)

(0
.1
0)

(0
.5
2)

(0
.0
1)

P
an

el
C
:
Y
ea
r
T
w
o,

A
n
y
D
G

(1
)‡

(2
)

(3
)

(4
)

(5
)‡

(6
)‡

(7
)‡

(8
)‡

(9
)‡

(1
0)

‡
(1
1)

(1
2)

(1
3)

(1
4)

A
n
y
D
G

77
.6
6

-1
,6
13
.2
7

84
.9
1*
*

2.
55

11
.1
8

65
.0
2

31
0.
84

(0
.6
7)

(0
.3
7)

(0
.0
4)

(0
.9
4)

(0
.6
2)

(0
.4
3)

(0
.1
8)

P
an

el
D
:
Y
ea
r
T
w
o,

D
G

by
S
u
b-
T
re
at
m
en

t
D
G

n
o
m
es
sa
gi
n
g

-2
.5
8

-1
,3
72
.6
3

11
7.
02

25
.3
6

61
.0
5

64
.8
3

36
8.
04

(0
.9
9)

(0
.4
5)

(0
.1
3)

(0
.6
1)

(0
.1
1)

(0
.6
2)

(0
.4
1)

D
G

+
la
b
or

58
1.
18
*

-1
27
.8
7

-5
9.
69

15
.3
0

-4
1.
12

88
.5
3

-1
23
.9
2

(0
.0
9)

(0
.6
8)

(0
.5
0)

(0
.8
0)

(0
.3
6)

(0
.6
2)

(0
.8
1)

D
G

+
se
lf
-e
ffi
ca
cy

-1
31
.9
8

-3
46
.8
6

-1
9.
65

-3
1.
98

-7
2.
93
*

-2
5.
71

-2
32
.7
7

(0
.6
3)

(0
.2
4)

(0
.8
5)

(0
.5
8)

(0
.0
6)

(0
.8
6)

(0
.6
4)

D
G

+
b
ot
h

-7
4.
16

-4
11
.6
8

-4
2.
62

-6
6.
27

-7
8.
10
*

-4
7.
01

13
1.
97

(0
.7
6)

(0
.1
7)

(0
.6
6)

(0
.1
7)

(0
.0
6)

(0
.7
5)

(0
.8
1)

O
b
se
rv
at
io
n
s

2,
06
1

2,
06
1

2,
06
1

2,
06
1

2,
06
1

2,
06
1

2,
06
1

C
on

tr
ol

G
ro
u
p
M
ea
n
,
Y
ea
r
T
w
o

20
48

34
11

26
3.
9

36
9

16
4.
3

13
8.
8

11
82

S
ta
n
d
ar
d
er
ro
rs
,
cl
u
st
er
ed

at
th
e
v
il
la
ge

le
ve
l,
p
-v
al
u
es

re
p
or
te
d
in

p
a
re
n
th
es
es
.
In

p
u
ts

is
th
e
a
m
o
u
n
t
sp
en
t
in

In
d
ia
n
R
u
p
ee
s
o
n
ea
ch

in
p
u
t
o
n
th
e
fa
rm

in
a
se
a
so
n
,

an
d
H
ir
e
d

L
a
b
o
r
E
x
p
e
n
se
s
is

th
e
am

ou
n
t
sp
en
t
in

In
d
ia
n
R
u
p
ee
s
o
n
h
ir
in
g
la
b
o
r
in

a
se
a
so
n
o
n
a
sp
ec
ifi
c
p
ra
ct
ic
e.

S
R
I
R
e
le
v
a
n
t
re
fe
rs

to
p
ra
ct
ic
es

w
h
er
e
w
e

w
ou

ld
ex
p
ec
t
d
iff
er
en
ce
s
in

in
p
u
ts

b
et
w
ee
n
tr
ad

it
io
n
al

an
d
S
R
I
g
ro
w
n
ri
ce
.

‡
In

Y
ea
r
T
w
o
w
e
d
id

n
ot

co
n
d
u
ct

a
m
id
li
n
e
su
rv
ey
,
th
u
s,
w
e
d
id

n
o
t
su
rv
ey

fa
rm

er
s
o
n
th
ei
r

m
id
li
n
e
p
ra
ct
ic
es
.
C
on

tr
ol

G
ro
u
p
T
re
n
d
is

Y
ea
r
O
n
e’
s
co
n
tr
o
l
g
ro
u
p
m
ea
n
o
u
tc
o
m
e
m
in
u
s
th
e
B
a
se
li
n
e’
s
co
n
tr
o
l
g
ro
u
p
m
ea
n
o
u
tc
o
m
e,

a
n
d
th
e
p
va
lu
e
in

p
a
re
n
th
es
es

re
fl
ec
ts

a
te
st

b
et
w
ee
n
th
e
B
a
se
li
n
e
an

d
Y
ea
r
O
n
e
co
n
tr
ol

gr
ou

p
m
ea
n
s.

W
e
co
n
tr
o
l
fo
r
w
h
et
h
er

a
h
o
u
se
h
o
ld
’s
to
ta
l
se
lf
-r
ep

o
rt
ed

fa
rm

o
u
tp
u
t
a
li
g
n
s
w
it
h
th
e
a
g
g
re
g
a
te

of
th
ei
r
re
p
or
te
d
so
ld
,
co
n
su
m
ed
,
st
or
ed
,
an

d
sh
ar
ed

p
ad

d
y
w
it
h
in

a
m
a
rg
in

o
f
er
ro
r
o
f
1
0
0
k
il
o
g
ra
m
s
th
ro
u
g
h
o
u
t.

41



Table 3: Estimated Normality Parameter
by Outcome

Mode 95% HDI
Adoption Index 123 60 240
Labor Days 1.46 1.33 1.60

Expenditures (Rps) 2.26 2.03 2.54
Output (Kgs) 1.24 1.13 1.36
Profits (Rps) 1.30 1.18 1.45
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Table 4: OLS, Quantile Regressions, and Weighted
Quantile Treatment Effects in Year One

AnyDG DG DG + DG + DG +
no messaging labor self-efficacy both

Output (kgs) controlling for number of paddy acres
ATE 113.34 263.4 69.99 7.09 114.53

(0.081) (0.028) (0.475) (0.928) (0.282)
Quantile .25 0 20.92 0 0 32.42

(1) (.208) (1) (1) (0.057)
Quantile .5 44.27 73.03 46.63 -22.25 73.37

(0.057) (0.065) (0.171) (0.42) (0.043)
Quantile .75 108.7 171.56 72.04 65.88 127.39

(0.005) (0.026) (0.171) (0.277) (0.042)
Output (kgs) NOT controlling for number of paddy acres
ATE 117.23 257.86 75.44 2.75 132.8

(0.085) (0.042) (0.458) (0.974) (0.232)
Quantile .25 5 30 0 0 40

(0.668) (0.072) (1) (1) (0.017)
Quantile .5 20 50 20 0 100

(0.469) (0.357) (0.599) (1) (0.037)
Quantile .75 200 280 160 0 200

(0.005) (0.125) (0.199) (1) (0.144)
WAQ 13.82 19.34 13.73 -8.02 36.31

(0.46) (0.48) (0.61) (0.77) (0.16)
Mean BP 30.40 30.4 27.40 -2.53 75.3

[-9.43-70] [-8.48-70] [-28-82.7] [-60.5-53.9] [13.5-138]
Yield (kgs/acres for those who planted)
ATE 237.98 379.87 47.85 -3.16 493.15

(0.141) (0.156) (0.846) (0.986) (0.1)
Quantile .25 66.47 144.7 22.03 -38.16 108.12

(0.019) (0.095) (0.594) (0.384) (0.008)
Quantile .5 165.57 276.89 148.95 -0.66 227.42

(0.009) (0.005) (0.08) (0.994) (0.008)
Quantile .75 111.63 210.09 -88.37 111.63 111.63

(0.121) (0.024) (0.285) (0.34) (0.349)
WAQ 58.58 100.27 22.03 2.32 82.78

(0.14) (0.06) (0.67) (0.96) (0.10)
Mean BP 156 228 75.6 0.725 156

[34-278] [96.1-361] [-44.9-196] [-128-133] [35.8-279]
IHS(Output)
ATE 0.15 0.32 0.04 -0.14 0.37

(0.504) (0.322) (0.899) (0.676) (0.253)
Quantile .25 2.31 4.09 0 0 4.38

(0.552) (0) (1) (1) (0)
Quantile .5 0.06 0.06 0 0 0.29

(0.486) (0.658) (1) (1) (0.032)
Quantile .75 0.22 0.3 0.18 0 0.22

(0.015) (0.028) (0.196) (1) (0.078)
WAQ 0.15 0.28 0.15 0.05 0.27

(0.02) (0.02) (0.11) (0.57) (0.002)
IHS(Yield)
ATE 0.18 0.4 0.01 -0.03 0.33

(0.454) (0.234) (0.988) (0.93) (0.328)
Quantile .25 0.47 0.83 0.18 -0.42 0.68

(0.237) (0.133) (0.76) (0.8) (0.169)
Quantile .5 0.22 0.34 0.2 -0.01 0.29

(0.015) (0.003) (0.093) (0.928) (0.009)
Quantile .75 0.07 0.13 -0.06 0.07 0.07

(0.173) (0.051) (0.402) (0.376) (0.326)
WAQ 0.14 0.27 0.02 0.01 0.23

(0.02) (0.002) (.075) (0.88) (0.002)

Standard errors, clustered at the village level for average treatment effect (ATE) in OLS estimation. p-values reported in parentheses.
Mean BP refers to the Mean of the Bayesian Posterior Distribution of the treatment effect estimator. The The 95% Highest Density
Interval (HDI) is reported in brackets for Mean BP and lists the most likely estimated parameter values that comprise 95% of the
distribution of possible effects with HDIlo and HDIhigh as the bounds. IHS refers to inverse hyperbolic sine function. Regressions
are clustered at the village level, p-values reported in parentheses. WAQ stands for weighted average quantile (waq) estimator as
detailed in Athey et al. (2023). This table does not control for *share* as in Table 1 and 6.



Table 5: Mean Bayesian Posterior Distribution of Treatment Effects

Effect HDIlo HDIhigh Prob <0 Prob >0
Adoption Index

DG no messaging -0.003 -0.08 0.07 0.53 0.47
DG + labor -0.008 -0.13 0.11 0.55 0.45

DG + self efficacy 0.008 -0.11 0.13 0.44 0.56
DG + both 0.008 -0.10 0.12 0.445 0.555

Labor Days
DG no messaging -1.32 -3.8 1.21 0.849 0.151

DG + labor -.97 -4.74 2.84 0.69 0.31
DG + self efficacy -1.27 -4.91 2.37 0.75 0.25

DG + both -1.29 -4.92 2.17 0.72 0.24
Expenditures (Rps)

DG no messaging -284 -728 166 0.89 0.11
DG + labor 36.6 -615 672 0.46 0.54

DG + self efficacy -608 -1210 0.25 0.98 0.02
DG + both -40.3 -664 582 0.55 0.45

Output (Kgs)
DG no messaging 30.4 -8.48 70 0.06 0.94

DG + labor 27.40 -28 82.7 0.17 0.83
DG + self efficacy -2.53 -60.5 53.90 0.54 0.46

DG + both 75.3 13.5 138 0.07 0.99
Profits (Rps)

DG no messaging 590 -193 1380 0.07 0.93
DG + labor 262 -919 1440 0.33 0.67

DG + self efficacy -175 -1230 865 0.63 0.37
DG + both 1620 315 2870 0.05 0.99

The 95% Highest Density Interval (HDI) indicates the most likely estimated param-
eter values that comprise 95% of the distribution of possible effects with HDIlo and
HDIhigh as the bounds. The Prob < 0 or > 0 is the probability that the true effect
is less than or greater than zero.
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Table 6: ITT Treatment Effects on Farm Outcomes (per acre)

VARIABLES Adoption Labor Expenditures Yield Profits
Index Days/Acre (Rps/Acre) (Kgs/Acre) (Rps/Acre)

Panel A: Year One, Any DG (1) (2) (3) (4) (5)
Any DG -0.00 -9.30 298 250 3,335

(0.98) (0.65) (0.88) (0.12) (0.29)
[0.98] [0.98] [0.98] [0.6] [0.73]

Panel B: Year One, DG by Sub-Treatment
DG no messaging -0.02 -16.71 -1,314 375 7,215

(0.76) (0.42) (0.60) (0.16) (0.06)
[0.84] [0.84] [0.84] [0.76] [0.4]

DG + labor 0.02 4.31 1,221 -306 -8,181
(0.84) (0.80) (0.69) (0.35) (0.05)
[0.84] [0.84] [0.84] [0.84] [0.4]

DG + self-efficacy 0.03 3.15 3,040 -370 -11,382
(0.71) (0.82) (0.37) (0.19) (0.02)
[0.84] [0.84] [0.84] [0.76] [0.4]

DG + both 0.03 20.57 2,201 142 3,042
(0.69) (0.28) (0.40) (0.70) (0.60)
[0.84] [0.84] [0.84] [0.84] [0.84]

Observations 2,156 1,944 1,944 1,944 1,944
Control Group Mean, Year One 0.22 107 15947 1250 12207
Control Group Trend 7201 898

Panel C: Year Two, Any DG (1)‡ (2) (3) (4) (5)
Any DG [ 0.02] 1.99 -114 90.1 2,066

[ (0.57)] (0.44) (0.76) (0.06) (0.06)
[0.71] [0.76] [0.15] [0.15]

Panel D: Year Two, DG by Sub-Treatment
DG no messaging [ 0.04] 1.56 -129 88.2 2,299

[ (0.47)] (0.73) (0.76) (0.37) (0.25)
[0.96] [0.96] [0.96] [0.96]

DG + labor [ 0.00] 1.75 426 56 481
[ (0.96)] (0.72) (0.24) (0.61) (0.84)

[0.96] [0.96] [0.96] [0.96]
DG + self-efficacy [ -0.02] 0.51 -142 27.6 -343

[ (0.76)] (0.93) (0.70) (0.81) (0.88)
[0.96] [0.96] [0.96] [0.96]

DG + both [ -0.05] -0.48 -196 -69 -983
[ (0.31)] (0.92) (0.55) (0.50) (0.65)

[0.96] [0.96] [0.96] [0.96]
Observations 2,032 2,035 2,036 2,032
Control Group Mean, Year Two [ 0.158] 39.1 3685 472 5240
Standard errors, clustered at the village level, p-values reported in parentheses and False
Discovery Rate (FDR) pvalues reported in brackets Anderson (2008). All variables are mea-
sured per farm. Adoption Index is an index ranging from 0-5, which reflects whether the
farmer implemented the practices broken down in Table A.3 according to SRI principles.
Labor Days represents the total labor days (both family and hired labor) on cleaning,
pesticide, threshing, and harvesting, which are the activities for which we have responses
in both Year One and Year Two. Expenditures represents the common set of total ex-
penditures between Year One and Year Two spent on inputs including fertilizer, machine
rental and irrigation. In Year Two we did not conduct a midline survey, thus Expenditures
reflect endline (harvest) costs only. Output is total kilograms of rice produced on the farm.
Estimated Profit is a constructed variable and is equal to harvest storedxpr + harvest
soldxpf - Expenditures - Hired Labor, where pf is the reported farm gate price at which
a farmer sold her rice, and pr is the estimated retail price each year (25.6 Rps/kgs and 27.8
Rps/kgs from (Bhoi et al., 2019)). For the full set of expenditures surveyed by year see Ta-
ble 7. Control Group Trend is Year One’s control group mean outcome minus the Baseline’s
control group mean outcome. We control for whether a household’s total self-reported farm
output aligns with the aggregate of their reported sold, consumed, stored, and shared paddy
within a margin of error of 100 kilograms throughout. ‡Questions about general adoption
practices were not asked in the final endline.
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Table 8: Mean Bayesian Posterior Distribution of Treatment Effects (per acre)

Effect HDIlo HDIhigh Prob <0 Prob >0
Adoption Index

DG no messaging -0.01 -0.13 0.12 0.58 0.42
DG + labor -.003 -0.11 0.12 0.47 0.52

DG + self efficacy 0.06 -0.06 0.19 0.16 0.84
DG + both 0.009 -0.11 0.12 0.43 0.57

Labor Days
DG no messaging 2.84 -4.99 10.9 0.24 0.76

DG + labor -2.48 -9.73 4.94 0.75 0.26
DG + self efficacy -1.4 -8.97 6.36 0.64 0.36

DG + both -0.08 -7.47 7.22 0.51 0.49
Expenditures (Rps)

DG no messaging -64.5 -913 806 0.56 0.44
DG + labor 86.8 -769 930 0.42 0.58

DG + self efficacy -48.5 -881 783 0.55 0.46
DG + both -137 -989 787 0.62 0.38

Yield (Kgs/Acre)
DG no messaging 228 96.1 361 0 1.0

DG + labor 75.6 -44.9 196 0.11 0.89
DG + self efficacy 0.725 -128 133 0.50 0.50

DG + both 156 35.8 279 0.06 0.99
Profits (Rps)

DG no messaging 4470 1360 7700 0.02 0.99
DG + labor 752 -1990 3520 0.30 0.70

DG + self efficacy 173 -2740 3020 0.46 0.54
DG + both 3610 929 6340 0.04 0.99

The 95% Highest Density Interval (HDI) indicates the most likely estimated param-
eter values that comprise 95% of the distribution of possible effects with HDIlo and
HDIhigh as the bounds. The Prob < 0 or > 0 is the probability that the true effect
is less than or greater than zero.
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Table A.1: Baseline Summary Statistics per Household, by Treatment Assignment
Means and Standard Errors

VARIABLE Control
DG ·
only

DG ·
labor

DG ·
self-efficacy

DG ·
both

F-stat
p-value

(1) (2) (3) (4) (5) (6)
Heard of SRI (y/n) 0.33 0.30 0.28 0.33 0.32 0.97

(0.03) (0.04) (0.05) (0.05) (0.04)
Adoption Index 1.41 1.46 1.53 1.55 1.33 0.71

(0.07) (0.08) (0.10) (0.09) (0.08)
Paddy Acres 1.70 1.84 2.00 1.75 1.82 0.93

(0.12) (0.15) (0.24) (0.16) (0.12)
Expenditures 000’s Rps 12.4 11.8 13.9 10.0 12.5 0.77

(1.44) (1.58) (2.68) (1.91) (1.96)
Rice Output 00’s KGs 6.04 7.00 5.42 7.30 6.14 0.81

(0.63) (0.82) (0.80) (1.22) (0.57)
Estimated Profit 000’s Rps 1.24 1.34 -4.25 5.62 0.13 0.20

(2.71) (2.05) (3.15) (3.10) (2.12)
Observations 231 131 93 108 149

Standard errors, clustered at the village level, reported in parentheses. All agricultural outcomes for the
baseline are retrospective reports for the previous year’s kharif season in 2013. The baseline was compro-
mised due to mud slides and difficulty reaching more than half of the targeted sample. Expenditures
represents the common set of total expenditures between Baseline Year One and Year Two including
fertilizer, machine rentals, and irrigation for the entire season. For the full set of expenditures and labor
days surveyed by year see Table 7. Rice Output is the total amount of rice produced in kilograms for
2013. Estimated Profit is a constructed variable and is equal to harvest storedxpr + harvest soldxpf
- total expenditures - hired labor, where pf is the reported farm gate price at which a farmer sold her
rice, and pr is the estimated retail price (24.2 Rps/kgs from (Bhoi et al., 2019)). Column 6 reports the
p-value from a F-test of the equality of the coefficients in each row.
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Table A.2: Orthogonality Check: Household Demographics and Dwelling Characteristics from Midline
Survey Year One, Means and Standard Errors

VARIABLE Control
DG

no messaging
DG · labor DG ·

self-efficacy
DG · both F-stat

p-value
(1) (2) (3) (4) (5) (6)

Baseline
Hhd size 6.85 6.23 6.78 7.17 7.01 0.19

(0.26) (0.26) (0.43) (0.36) (0.33)
SHG Membership 3.36 3.16 3.66 3.74 3.29 0.45
(years) (0.13) (0.17) (0.22) (0.14) (0.13)
Age of home 13.56 15.21 12.86 14.56 14.34 0.79

(0.91) (1.27) (1.36) (1.38) (1.30)
Rooms in house 3.11 2.97 2.61 2.96 3.22 0.07

(0.13) (0.14) (0.13) (0.14) (0.17)
Has electricity (y/n) 0.49 0.5 0.43 0.46 0.46 0.97

(0.03) (0.04) (0.05) (0.05) (0.04)
Grass thatched roof (y/n) 0.34 0.45 0.44 0.38 0.37 0.62

(0.03) (0.04) (0.05) (0.05) (0.04)
Mud walls (y/n) 0.35 0.35 0.51 0.34 0.32 0.23

(0.03) (0.04) (0.05) (0.05) (0.04)
Owns irrigation pump (y/n) 0.07 0.13 0.04 0.08 0.1 0.16

(0.02) (0.03) (0.02) (0.03) (0.03)
Owns tractor (y/n) 0.04 0.03 0.01 0 0.02 0.001

(0.01) (0.01) (0.01) (0.00) (0.01)
229 132 93 106 146

Midline
Hhd size 6.37 6.06 6.3 6.1 6.39 0.51

(0.13) (0.18) (0.18) (0.18) (0.18)
SHG Membership 3.48 3.50 3.68 3.57 3.40 0.70
(years) (0.06) (0.09)) (0.08) (0.09) (0.09)
Age of home 13.38 15.62 14.82 13.22 15.53 0.19

(0.49) (0.84) (0.86) (0.77) (0.85)
Rooms in house 3.16 3.16 2.95 3.12 3.23 0.31

(0.06) (0.09) (0.09) (0.08) (0.09)
Has electricity (y/n) 0.44 0.49 0.47 0.49 0.5 0.79

(0.02) (0.03) (0.03) (0.03) (0.02)
Grass thatched roof (y/n) 0.31 0.36 0.33 0.32 0.3 0.53

(0.02) (0.02) (0.02) (0.02) (0.02)
Mud walls (y/n) 0.32 0.34 0.33 0.33 0.31 0.97

(0.02) (0.02) (0.02) (0.02) (0.02)
Owns irrigation pump (y/n) 0.12 0.12 0.12 0.13 0.14 0.93

(0.01) (0.02) (0.02) (0.02) (0.02)
Owns tractor (y/n) 0.01 0.01 0.02 0.01 0.01 0.22

(0.00) (0.00) (0.01) (0.01) (0.01)
Observations 802 376 381 378 403

*** p<0.01, ** p<0.05, * p<0.1 Standard errors, clustered at the village level, reported in parentheses. The Baseline was
compromised due to mud slides and difficulty reaching more than half of the targeted sample. Since Year One’s midline
sample was substantially larger than the baseline, this table checks for balance between treatment and control groups on
durable assets and household size. Column 6 reports the p-value from a F-test of the equality of the coefficients in each row.
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Table A.3: ITT Treatment Effects on Farm Adoption Practices
for Traditional Growers

VARIABLES No. Age No. Seedling Row
Weedings Sapling Saplings Spacing Spacing

Panel A: Year One, Any DG (1) (2) (3) (4) (5)
Any DG -0.02 -0.05 0.27 0.02 0.00

(0.68) (0.93) (0.27) (0.66) (0.75)
Panel B: Year One, DG by Sub-Treatment (5) (6) (7) (8) (9)
DG no messaging -0.03 -0.88 0.02 0.00 -0.00

(0.58) (0.32) (0.90) (0.97) (0.73)
DG + labor 0.04 0.08 0.79 -0.01 0.01

(0.62) (0.95) (0.34) (0.84) (0.52)
DG + self-efficacy 0.06 1.34 0.08 0.02 0.00

(0.43) (0.16) (0.75) (0.75) (0.80)
DG + both -0.03 1.83 0.10 0.05 0.01

(0.63) (0.03) (0.61) (0.40) (0.44)
Observations 1,726 1,697 1,659 1,721 1,726
Control Group Mean, Year One 1.66 24.13 2.82 0.44 0.03
Control Group Trend -0.24 -0.09 -0.15 0.33 -0.35

Standard errors, clustered at the village level, p-values reported in parentheses. No. Weedings
is ”How many times did you weed your field?” At least two times weeding are required for a SRI
field in Kharif season. Age Sapling is “What was the age of the sapling when you transplant to
nursery bed?” Saplings should be 8 - 14 days old for transplantation. No. Saplings is “How many
saplings did you transplant together?” One sapling should be planted at a dip. Seedling Spacing
is “Was there a fixed distance between each seedling? ” 8 - 10 inches distance between saplings.
Row Spacing is “Was there a fixed distance between each seedling? ” 8 - 10 inches distance
between rows. Control Group Trend is the Year One’s mean control group outcome minus the
baseline’s mean control group outcome. Control Group Trend is Year One’s control group mean
outcome minus the Baseline’s control group mean outcome. We control for whether a household’s
total self-reported farm output aligns with the aggregate of their reported sold, consumed, stored,
and shared paddy within a margin of error of 100 kilograms throughout.
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Table A.4: Process Verification: Self-reports on Watching Videos
from Digital Green

VARIABLES Seed Nursery Trans
Video Video Video

Panel A: Year One, Any DG (1) (2) (3)
Any DG 0.14 0.13 0.17

(0.00) (0.00) (0.00)
Panel B: Year One, DG by Sub-Treatment (1) (2) (3)
DG no messaging 0.17 0.14 0.18

(0.00) (0.00) (0.00)
DG + labor -0.03 -0.02 -0.03

(0.46) (0.62) (0.54)
DG + self-efficacy -0.03 -0.02 0.00

(0.46) (0.58) (0.96)
DG + both -0.04 0.01 0.01

(0.35) (0.84) (0.90)
Observations 1,739 1,739 1,739
Control Group Mean, Year One 0.05 0.03 0.08
Standard errors, clustered at the village level, p-values reported in parentheses. Seed
Video, Nursery Video, and Trans Video are binary response variables to whether
the respondent said that he/she was exposed to any projected videos on Seed Treat-
ment, Nursery Bed Preparation, or Transplantation in the past year. We control for
whether a household’s total self-reported farm output aligns with the aggregate of
their reported sold, consumed, stored, and shared paddy within a margin of error of
100 kilograms throughout.
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Table A.5: Mean Bayesian Posterior Distribution of
Treatment Effects (levels), Strong Priors

Effect HDIlo HDIhigh Prob <0 Prob >0
Adoption Index

DG no messaging -0.02 -0.13 0.09 0.64 0.36
DG + labor 0.008 -0.13 0.12 0.56 0.44

DG + self efficacy 0.007 -0.11 0.13 0.45 0.55
DG + both 0.08 -0.10 0.12 0.44 0.55

Labor Days
DG no messaging -1.29 -4.79 2.23 0.76 0.23

DG + labor -0.96 -4.7 2.82 0.70 0.30
DG + self efficacy -1.26 -4.95 2.34 0.75 0.25

DG + both -1.28 -4.79 2.29 0.76 0.24
Expenditures (Rps)

DG no messaging -495 -1110 118 0.94 0.05
DG + labor 37.7 -612 668 0.46 0.55

DG + self efficacy -608 -1200 -3.12 0.97 0.02
DG + both -40.6 -668 576 0.55 0.45

Output (Kgs)
DG no messaging 28.8 -31.3 90.7 0.17 0.82

DG + labor 27.4 -28 82.6 0.17 0.83
DG + self efficacy -2.57 -59.6 54.2 0.54 0.46

DG + both 75.1 13.4 138 0.08 0.99
Profits (Rps)

DG no messaging 767 -491 2020 0.11 0.88
DG + labor 261 -905 1470 0.34 0.66

DG + self efficacy -173 -1210 886 0.63 0.37
DG + both 1620 344 2900 0.05 0.99

The 95% Highest Density Interval (HDI) indicates the most likely estimated param-
eter values that comprise 95% of the distribution of possible effects with HDIlo and
HDIhigh as the bounds. The Prob < 0 or > 0 is the probability that the true effect
is less than or greater than zero.
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Table A.6: Mean Bayesian Posterior Distribution of
Treatment Effects (per acre), Strong priors

Effect HDIlo HDIhigh Prob <0 Prob >0
Adoption Index

DG no messaging -0.01 -0.13 0.10 0.59 0.41
DG + labor 0.003 -0.11 0.12 0.48 0.52

DG + self efficacy 0.06 -0.06 0.18 0.16 0.84
DG + both 0.01 -0.10 0.12 0.43 0.57

Labor Days
DG no messaging 2.89 -5.15 10.7 0.24 0.76

DG + labor -2.49 -9.79 4.99 0.75 0.25
DG + self efficacy -1.42 -8.97 6.34 0.64 0.36

DG + both 0.06 -7.37 7.44 0.51 0.49
Expenditures (Rps)

DG no messaging -60.6 -908 809 0.56 0.44
DG + labor 86.8 -771 927 0.42 0.58

DG + self efficacy -49.5 -906 777 0.55 0.45
DG + both -138 -1000 765 0.62 0.38

Yield (Kgs/Acre)
DG no messaging 228 95.6 360 0 1.0

DG + labor 75.2 -47.6 193 0.11 0.90
DG + self efficacy 0.99 -130 130 0.50 0.50

DG + both 156 32.7 279 0.07 0.99
Profits (Rps)

DG no messaging 3600 940 6330 0.04 0.99
DG + labor 3600 940 6330 0.04 0.70

DG + self efficacy 3600 940 6330 0.04 0.70
DG + both 3600 940 6330 0.04 0.70

The 95% Highest Density Interval (HDI) indicates the most likely estimated param-
eter values that comprise 95% of the distribution of possible effects with HDIlo and
HDIhigh as the bounds. The Prob < 0 or > 0 is the probability that the true effect
is less than or greater than zero.
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B Appendix: Videos and Scripts

Script for Clip (a) Below is the script for Clip (a), a short (30-60) seconds) clip that shows the actual

labour costs of SRI per unit area (e.g., katha).

Video producers should feel free to revise the language, tone, labour-cost information, and actor. The goal

is a short, informative clip that indicates what the labour costs of SRI actually are on a per-area basis.

Recommended actor type: Same actor as in current videos– a woman who has successfully tried SRI in the

past.

Dress: Actor is dressed in normal clothes worn for farming activities.

Background: Actor is standing in front of a neutral background (such as a house, or a farm, or a forest).

They look directly into the camera when speaking.

Script: “Our household has been using SRI for paddy for several years. At first, we were worried that

it would take more labour than traditional paddy, so we tried it in a corner of one of our plots of land.

For [topic of the video], we found that SRI requires about [X more/less] days of labour compared with the

traditional method. And over the entire planting cycle, there was only a total of [one day more] of labour

per katha for SRI over traditional. For that we gained over [50kg] more rice per katha with SRI, which even

at [Rs. 10] per kg would be [Rs. 500] more in value per katha. Because of this, SRI is worth the little bit of

extra labour, and we will plant using SRI again this year.”

Instructions to VRPs: After this section of the video plays, the VRPs should pause the video and ask the

audience questions about the labour costs of SRI, both for this topic, and overall for SRI.

Script for Clip (b)

Below is the suggested script for Clip (b), a short (30-60 seconds) clip in which a local farmer who has

implemented SRI mentions that she has successfully implemented SRI.

Video producers should feel free to revise the language, tone, and details of the content. The goal is a short,

testimonial clip in which someone who was initially uncertain of his/her SRI-planting ability is now confident

of his/her ability and encourages others to try it.

Recommended actor type: Same actor as in current videos, a woman who has successfully tried SRI in the

past.

Dress: Actor is dressed in normal clothes worn for farming activities.

Background: Actor is standing in front of his/her well-stocked store of rice, or in front of a neutral back-

ground (such as a house, or a farm, or a forest). She looks directly into the camera when speaking.

Script: “Our household has been using SRI for paddy for several years. At first, I was not sure if we could

plant SRI, because the technique is different from the traditional method. So, we tried it in a corner of one

of our plots of land to begin with. We found that planting using SRI is not that different from the traditional

method. We also found that the VRPs are very helpful in keeping us informed. We asked them questions
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from time to time and their answers helped us. Every year, we have had a larger harvest with SRI than

we did with the traditional method. And now we know that we are able to plant using SRI. My family is

a regular farming family– if our household can plant with SRI, then your household can also plant with SRI.”

Instructions to VRPs: After this section of the video plays, the VRPs should pause the video and do the

following: First, ask the audience to repeat the last sentence of this section out loud and in unison, as follows:

“If that woman’s family can plant with SRI, then my household can plant with SRI, too.” Second, ask if

anyone in the audience has implemented SRI successfully. If there is such a person, that person should be

invited to share their experience with the group. After that, again ask everyone to recite in unison, “If her

family can plant with SRI, then my household can plant with SRI, too.”
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