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Abstract 

Medical journals have adhered to a reporting practice that seriously limits the usefulness of 
published trial findings. Medical decision makers commonly observe many patient 
covariates and seek to use this information to personalize treatment choices. Yet standard 
summaries of trial findings only partition subjects into broad subgroups, typically into binary 
categories. Given this reporting practice, the researchers study the problem of inference on 
long mean treatment outcomes E[y(t)|x], where t is a treatment, y(t) is a treatment outcome, 
and the covariate vector x has length K, each component being a binary variable. The 
available data are estimates of {E[y(t)|xk = 0], E[y(t)|xk = 1], P(xk)}, k = 1, . . . , K reported in 
journal articles. They show that reported trial findings partially identify {E[y(t)|x], P(x)}. 
Illustrative computations demonstrate that the summaries of trial findings in journal articles 
may imply only wide bounds on long mean outcomes. One can realistically tighten 
inferences if one can combine reported trial findings with credible assumptions having 
identifying power, such as bounded-variation assumptions. 

The authors thank Gordon Guyatt for inspiring this study idea. Ivan Canay, Francesca Molinari, Qingyang Shi, and 
Joerg Stoye provided helpful comments. 



1. Introduction 

 

Our concern with the inferential problem studied in this paper stems from difficulties we have 

encountered when seeking to interpret summaries of trial findings reported in medical journals. Modern 

patient care aims to base treatment choice on the findings of randomized trials that compare alternative 

treatments. However, journals have adhered to a reporting practice that seriously limits the usefulness of 

published findings. Medical decision makers commonly observe many patient covariates and seek to use 

this information to personalize treatment choice. Yet standard summaries of trial findings only partition 

subjects into broad subgroups, typically into binary categories. 

 

Illustration: Zinman et al. (2015) studied the effects of the drug empagliflozin on cardiovascular morbidity 

and mortality in patients with type 2 diabetes at high cardiovascular risk. The investigators randomly 

assigned subjects to receive empagliflozin or placebo once daily and compared the between-group 

incidence of the primary composite outcome, which included cardiovascular death from cardiovascular 

causes, nonfatal myocardial infarction, and nonfatal stroke. Like most other trials, the authors followed the 

reporting guideline (Schulz, et al., 2010) and reported multiple subgroup analyses defined by categorical 

covariates, most of which were binary including sex, age, and high or low glycated hemoglobin (HbA1c). 

In practice, a diabetologist knows patient values for most or all of these covariates. Thus, learning the 

probability of the outcome for a patient with a specified combination of covariates (age, sex, HbA1c, etc.) 

would facilitate decision-making. However, the journal article only reported findings on the frequency of 

the outcome in each covariate category separately. Note that the study population was not geographically 

comprehensive, which limits clinical interpretation in particular countries (Zhou et al., 2021). 

 

 Constraints on article length set by journals make it unrealistic to expect more than marginal additions 

to the summaries of trial findings now presented in main texts. Concern with type I error (false positives) 
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also restricts reporting multiple subgroup analysis (Wang et al., 2007). Individual-level patient data would 

be very helpful but its sharing is rare in practice. 

 Given the standard reporting practice, this paper studies the problem of inference on mean treatment 

outcomes E[y(t)|x]. Here t is a treatment administered in a randomized trial and y(t) is a bounded real-

valued treatment outcome. The covariate vector x = (x1, x2, . . . , xK) has length K, each component being a 

binary categorical variable. The available data are estimates of {E[y(t)|xk = 0], E[y(t)|xk = 1], P(xk)}, k = 1, 

. . . , K reported in journal articles. Adapting the regression terminology of Goldberger (1991) and Cross 

and Manski (2002), we refer to E[y(t)|x] and E[y(t)|xk] as long and short mean outcomes. 

The present inferential problem is reminiscent of but differs from one analyzed in Cross and Manski 

(2002) and Manski (2018). There the aim was similarly to learn a long regression E(y|x). What differed was 

the available data. The data were estimates of short conditional distributions P(y|x1, x2, . . . xJ) and P(xJ+1, 

xJ+2, . . ., xK|x1, x2, . . . xJ) for some J such that 1 ≤ J < K. Inference on long regressions using estimates of 

these short distributions has commonly been called ecological inference. 

 Here, as in ecological inference, the basic problem is identification. Section 2 shows that knowledge 

of {E[y(t)|xk = 1], E[y(t)|xk = 0], P(xk)}, k = 1, . . . , K partially identifies {E[y(t)|x], P(x)}. The identification 

region is the set of solutions to equations that relate short to long mean outcomes and inequalities that bound 

the possible values of the unknown quantities.  

 Our abstract identification analysis is simple, but computation of identification regions poses 

challenges. We ise a tractable numerical method to compute sharp bounds on long mean outcomes. We use 

trial findings in Zinman et al. (2015) to illustrate. Computation in this illustrative case and others 

demonstrates that the summaries of trial findings in journal articles may imply only very wide, indeed often 

uninformative, bounds on long mean outcomes. 

One might anticipate that observed properties common to short mean outcomes imply corresponding 

properties of long mean outcomes. To the extent that this holds, the summary of trial findings reported in 
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journal articles may be useful. However, we find that important properties cannot be extrapolated from 

short to long mean outcomes. 

For example, suppose that a reported summary of trial findings reveals that, for a given ξ ∊ {0, 1}K 

and real number V, E[y(t)|xk = ξk] > V for all k = 1, . . . , K. One might then expect that E[y(t)|x = ξ] > V, 

but this does not follow. The value of the long mean outcome may be substantially less than V. 

One can realistically tighten long inferences if one can combine reported trial findings with credible 

assumptions having identifying power. Section 3 poses and studies bounded-variation assumptions. Such 

assumptions have previously been used in ecological inference. We again use data from Zinman et al. 

(2015) to illustrate. 

While the core concern of this paper is identification, it is also desirable to measure sampling 

imprecision. The prevalent approach to sample inference on partially-identified parameters has been to 

compute confidence sets with desirable asymptotic properties. But the methods developed to date do not fit 

the present setting. Section 4 explains and suggests an alternative way to measure imprecision. 

The reporting issues examined in this paper could be mitigated if trial investigators were to make 

public the data they collect on subject-specific covariates and outcomes, with appropriate steps taken to 

ensure privacy. Section 5 recommends that this occur. 

Throughout the paper, we use medical illustrations of the inferential problem because reporting short 

trial findings is so prevalent in medical research. However, the problem arises outside of medicine as well. 

It has, for example, become common for empirical microeconomists to emulate medical research in the 

design, analysis, and reporting of randomized trials. See American Economic Association (2022a). 

 

2. Identification of Long Mean Outcomes Using Short Trial Findings 
 

 

 Henceforth, let y(t) be a bounded real outcome under treatment t, whose range is normalized to take 

values in the interval [0, 1]. Let x = (x1, x2, . . , xK) be a K-variate vector of binary covariates, each taking 
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the value 0 or 1. The objective is to learn E[y(t)|x = ξ], ξ ∊ {0, 1}K. Summaries of trial findings in research 

articles commonly provide estimates of the K short mean outcomes E[y(t)|xk = 0] and E[y(t)|xk = 1], k = 1, 

. . . , K. Articles also commonly report the fraction of the study sample having each binary covariate value. 

These fractions provide estimates of P(xk), k = 1, . . . , K. 

 

2.1. Identification Analysis 

 

 The basic identification problem is to determine what can be deduced about E[y(t)|x] and P(x), given 

knowledge of [E[y(t)|xk = 0], E[y(t)|xk = 1], P(xk)], k = 1, . . . , K. In general, E[y(t)|x] and P(x) are partially 

rather than point identified. To focus on identification, we suppose that reported trial estimates are accurate.  

 We begin with inequalities satisfied by E[y(t)|x] and P(x). A covariate vector may be relevant to 

treatment only if it occurs with positive probability. Hence, E[y(t)|x] satisfy the inequalities 

 

(1a)    0  ≤  E[y(t)|x = ξ]  ≤  1,   ξ ∊ {0, 1}K, 

 

and we suppose that 

 

(1b)    0 < P(x = ξ),  ξ ∊ {0, 1}K. 

 

Next consider the relationship between short and long mean treatment outcomes. Let x-k be the (K−1)-

dimensional sub-vector of x that excludes xk. The Law of Iterated Expectations and Bayes Theorem give 

2K equations relating short to long mean outcomes: 

 

(2a)    E[y(t)|xk = 0]⋅P(xk = 0)  =      ∑    E[y(t)|xk = 0, x-k = ξ-k]P(xk = 0, x-k = ξ-k), 
                                                      ξ-k ∊ {0, 1}K – 1 
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(2b)    E[y(t)|xk = 1]⋅P(xk = 1)  =     ∑    E[y(t)|xk = 1, x-k = ξ-k]P(xk = 1, x-k = ξ-k). 
                                                      ξ-k ∊ {0, 1}K – 1 
 

The Law of Total Probability gives K equations relating marginal to joint probabilities of covariate values 

and one more from the fact that joint probabilities sum to one: 

 

(3a)   P(xk = 1)  =       ∑    P(xk = 1, x-k = ξ-k), 
                               ξ-k ∊ {0, 1}K – 1 
 
(3b)   1  =      ∑    P(x = ξ). 
                    Ξ ∊ {0, 1}K 

 

Reported summaries of trial findings reveal the left-hand sides of equations (2)−(3). The quantities 

E[y(t)|x] and P(x) on the right-hand sides are not reported in journal articles. Inequalities (1) and equations 

(2)-(3) express all of the available information about these quantities. Thus, the identification region for 

{E[y(t)|x], P(x)} is the set of values that solve (1)−(3). 

Observe that Equations (2)−(3) comprise 3K+1 equations in 2K+1 unknowns. Equations (2) connect 

the problems of identification of E[y(t)|x] and P(x). If the marginal covariate probabilities [P(xk), k = 1. , . 

, K] were observed but not the short mean outcomes {E[y(t)|xk], k = 1, . . . , K}, no conclusions could be 

drawn about E[y(t)|x]. Inference on P(x) using (1b) and (3) would be the classical problem of identification 

of a multivariate distribution given knowledge of its marginals, studied in the literature on Fréchet bounds. 

 Analysis of identification of long average treatment effects (ATEs) and relative risks is a simple 

extension of the above. Whereas we stated inequalities (1a) and equations (2) for a specified treatment t, 

analogous conditions hold for any other treatment tˊ. Inequalities (1b) and equations (3) hold as stated when 

considering tˊ. Thus, the feasible value of E[y(t)|x] – E[y(tˊ)|x], E[y(t)|x]/E[y(tˊ)|x], and P(x) are those that 

solve (1)−(3) and the analogous versions of (1b) and (2) applied to tˊ. 
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2.2. Computation of Sharp Bounds on Long Mean Treatment Outcomes 

 

Although the above identification analysis is simple, computation of identification regions is complex. 

Equations (2) are nonlinear, with multiplicative terms E[y(t)|x = ξ]⋅P(x = ξ), ξ ∊ {0, 1}K. It follows that the 

identification region for {E[y(t)|x], P(x)} is not convex. To see this, suppose one finds that specific values 

{E0[y(t)|x], P0(x)} and {E1[y(t)|x], P1(x)} are feasible. If the identification region were convex, the convex 

combination c{E1[y(t)|x], P1(x)} + (1 – c){E0[y(t)|x], P0(x)} would be feasible for all c ∈ (0, 1). This long 

vector satisfies (3) but not (2). The multiplicative terms E[y(t)|x]∙P(x) on the r.h.s. of (2) imply sub-

additivity, as c2 + (1 – c)2 < 1. 

 Rather than take on the formidable problem of computing the joint identification region for {E[y(t)|x 

= ξ], P(x) = ξ} for all values of (t, ξ), we specify a value of (t, ξ) and address the still challenging but more 

tractable problem of computing sharp lower and upper bounds for the scalar E[y(t)|x = ξ]. This task entails 

minimizing and maximizing E[y(t)|x = ξ] subject to the constraints imposed by (1)−(3). The identification 

region for E[y(t)|x = ξ] necessarily is a subset of the interval connecting the sharp bounds. Appendix 1 

shows that the region for E[y(t)|x = ξ] is the entire interval when the outcome y(t) is binary. Appendix 2 

describes our computational approach. 

 

2.3. Illustrative Application 

 

To illustrate, we use findings in Zinman et al. (2015). The computations that we perform  abstract from 

the difference between the estimates in the article and population probabilities. Sampling imprecision of 

the estimates is a relatively minor concern in this illustration because the identification problem is severe 

and because the trial size was large, with 4687 subjects receiving empagliflozin and 2333 receiving placebo. 

Let treatment t be empagliflozin, labelled t = e. The primary outcome yI is binary, so I(e)|x] = P[y(e) 

= 1|x]. Let K = 3. Let x1 = 0 or 1 if age < 65 or ≥ 65 years, labeled Y or O. Let x2 = 0 or 1 if sex is male or  
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female, labeled M or F. Let x3 = 0 or 1 if glycated hemoglobin is < 8.5% or ≥ 8.5%, labelled L or H. For 

example, x = (0,1,0) labelled YFL, represents females of age < 65 years with glycated hemoglobin < 8.5%. 

Data in Table S7 of the published article enables calculation of estimates of the probabilities that each 

covariate takes the value 0 or 1. Each estimate is the frequency of the covariate value in the group of subjects 

who receive empagliflozin. The estimates for xk = 1 are  

P(x1 = 1) = 0.446, P(x2 = 1) = 0.288, P(x3 = 1) = 0.315. 

The data enable calculation of estimates of short mean treatment outcomes, these being the frequencies 

with which the primary outcome occurs within the group of subjects who receive empagliflozin and have a 

specified covariate value. The estimates are 

P[y(e) = 1|x1 = 0] = 0.097, P[y(e) = 1|x1 = 1] = 0.114, 

P[y(e) = 1|x2 = 0] = 0.110, P[y(e) = 1|x2 = 1] = 0.091, 

P[y(e) = 1|x3 = 0] = 0.100, P[y(e) = 1|x3= 1] = 0.114. 

These short mean outcomes all lie within the narrow range from 0.091 to 0.114. A reader of Zinman 

et al. (2015) may think it reasonable to extrapolate that long mean outcomes must lie approximately within 

this range as well. But this conclusion does not follow from the available data. Given only the data and no 

additional assumptions, we find that the sharp bounds on long mean outcomes differ almost imperceptibly 

from the trivial bounds [0, 1]. The results are in Table 1A. 

 

Table 1A: Sharp Bounds on Long Mean Outcomes with Treatment by Empagliflozin 

x label P[y(e) = 1|x] lower bound P[y(e) = 1|x] upper bound 
YML 0.000 1.000 
OML 0.000 1.000 
YFL 0.000 1.000 
OFL 0.000 1.000 
YMH 0.001 0.999 
OMH 0.000 1.000 
YFH 0.000 1.000 
OFH 0.000 1.000 
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We have computed analogous bounds on long mean outcomes with treatment by placebo; denoted t = 

p. In this case, the estimates for xk = 1 are  

P(x1 = 1) = 0.444, P(x2 = 1) = 0.280, P(x3 = 1) = 0.311. 

The estimates of short mean outcomes are 

P[y(p) = 1|x1 = 0] = 0.093, P[y(p) = 1|x1 = 1] = 0.155, 

P[y(p) = 1|x2 = 0] = 0.126, P[y(p) = 1|x2 = 1] = 0.107, 

P[y(p) = 1|x3 = 0] = 0.130, P[y(p) = 1|x3= 1] = 0.101. 

The sharp bounds on long mean outcomes are again extremely wide. The solver results are in Table 1B. 

 

Table 1B: Sharp Bounds on Long Mean Outcomes with Treatment by Placebo 

x label P[y(p) = 1|x] lower bound P[y(p) = 1|x] upper bound 
YML 0.000 1.000 
OML 0.020 1.000 
YFL 0.000 1.000 
OFL 0.001 1.000 
YMH 0.001 1.000 
OMH 0.000 1.000 
YFH 0.000 0.999 
OFH 0.000 1.000 
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3. Identification with Bounded-Variation Assumptions 

 

 We have performed computations with a spectrum of short trial findings and found that the implied 

bounds on long mean outcomes are typically wide. Sometimes they are so wide as to be essentially 

uninformative, as are those presented above using the findings in Zinman et al. (2015). We therefore 

strongly caution against loose extrapolation from short findings to long mean outcomes. Nevertheless, we 

do not conclude that reported short findings are useless to medical decision making. 

One can tighten long inferences in a realistic way if one can combine reported trial findings with 

credible assumptions that have identifying power. Such assumptions may take many forms. We discuss 

bounded-variation assumptions. These have previously been used to add identifying power in ecological 

inference (Manski, 2018; Manski, Tambur, and Gmeiner, 2019) and other settings with partial identification 

of treatment effects (Manski and Pepper, 2018). 

 

3.1. Assumption Forms and Implications 

 

The simplest bounded-variation assumptions place a priori bounds directly on long mean treatment 

outcomes, expressing expert judgement about the potential range in which they may take values. Formally, 

one may believe it credible to assume that 

 

(4)    a(t, ξ)  ≤  E[y(t)|x = ξ]  ≤  b(t, ξ), 

 

where a(t, ξ) and b(t, ξ) are specified constants.  

 One may believe it credible to bound the degree to which mean outcomes vary across persons with 

different covariates. One may express this as a bound on the absolute or relative difference between mean 

outcomes. Such bounds have the form 
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(5)    c(t, ξ, ξ´)  ≤  E[y(t)|x = ξ] – E[y(t)|x = ξ´]  ≤  d(t, ξ, ξ´), 

(6)    e(t, ξ, ξ´)  ≤  E[y(t)|x = ξ]/E[y(t)|x = ξ´]  ≤  f(t, ξ, ξ´), 

 

where (ξ, ξ´) are distinct covariate values and [c(t, ξ, ξ´), d(t, ξ, ξ´), e(t, ξ, ξ´), f(t, ξ, ξ´)] are specified 

constants. 

 Or one may believe it credible to bound the degree to which mean outcomes vary across treatments, 

expressing this as a bound on ATEs or on relative risks across treatments. Such bounds have the form 

 

(7)    g(t, t´, ξ)  ≤  E[y(t)|x = ξ] – E[y(t´)|x = ξ]  ≤  h(t, t´, ξ), 

(8)    i(t, t´, ξ)  ≤  E[y(t)|x = ξ]/E[y(t´)|x = ξ]  ≤  j(t, t´, ξ). 

 

Here (t, t´) are distinct treatments and [g(t, t´, ξ), h(t, t´, ξ), i(t, t´, ξ), j(t, t´, ξ)] are specified constants. 

 Bounded-variation assumptions of forms (4)−(8) are not mutually exclusive. One may believe it 

credible to assert a set of such assumptions, depending on the context. An interesting consequence of 

equations (2) is that assumptions constraining long mean outcomes at specified covariate values ξ or (ξ, ξ´) 

help to identify long mean outcomes at other covariate values as well. 

 Adding assumptions of forms (4)−(6) to the information available in (1)−(3) does not complicate the 

problem of computing identification regions for long mean outcomes. It is straightforward to add these 

inequalities. We have found that our computational approach works well in practice when these inequalities 

are imposed. In contrast, adding assumptions of forms (7)−(8) complicates computation substantially. ne 

must now jointly apply equations (2) to both treatments t and t´. This increases the dimensionality and 

complexity of the problem of searching for sharp lower and upper bounds. 
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3.2. Further Illustrative Application 

 

 We add bounded-variation assumptions to the illustration in Section 2.3. Specifically, we add 

symmetric bounds on ATEs of form (5) when ξ and ξ´ differ from one another in only one component. 

Formally, we choose a constant b > 0 and add the assumption that −b  ≤  E[y(e)|x = ξ] – E[y(p)|x = ξ´]  ≤  

b whenever ξ and ξ´ differ from one another in only one of the three components (x1, x2, x3). 

We report here computations when b = 0.05. Tables 2A−2B present the findings. 

 

Table 2A: Sharp Bounds on Long Mean Outcomes with Treatment by Empagliflozin when b = 0.05 

x label P[y(e) = 1|x] lower bound P[y(e) = 1|x] upper bound 
YML 0.060 0.133 
OML 0.063 0.159 
YFL 0.033 0.144 
OFL 0.047 0.153 
YMH 0.056 0.160 
OMH 0.067 0.178 
YFH 0.020 0.155 
OFH 0.052 0.191 

 

Table 2B: Sharp Bounds on Long Mean Outcomes with Treatment by Placebo when b = 0.05 

x label P[y(p) = 1|x] lower bound P[y(p) = 1|x] upper bound 
YML 0.103 0.136 
OML 0.152 0.173 
YFL 0.056 0.099 
OFL 0.105 0.142 
YMH 0.055 0.094 
OMH 0.105 0.142 
YFH 0.105 0.142 
OFH 0.134 0.192 

 

We found that weaker assumptions using the larger constants b = 0.1 and b = 0.2 yielded informative upper 

bounds but mainly uninformative lower bounds on long mean outcomes. 
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 In presenting these findings, we do not assert that medical decision makers considering treatment of 

diabetes should believe it credible to assert the version of assumption (5) posed here. Our direct objective 

is simply to illustrate identification using bounded-variation assumptions. Should one think it reasonable to 

make the specific assumption used to produce Tables 2A-2B, we point out that we obtain fairly narrow 

bounds on long mean outcomes, with widths always less than 0.135 for t = e and less than 0.058 for t = p. 

Nevertheless, these bounds are not sufficiently informative to conclude that one treatment outperforms the 

other in terms of long ATE or relative risk. 

 

4. Measuring Sampling Imprecision 

 

The prevalent approach to sample inference on partially-identified parameters has been to compute 

confidence sets having desirable asymptotic properties. However, it appears that the methods developed to 

date, reviewed in Canay and Shaikh (2017) and Molinari (2020), cannot be applied in the present setting. 

The identification region for {E[y[t)|x], P(x)]} is a set-valued function of the vector of short quantities 

{E[y(t)|xk = ξk], P(xk = ξk), ξk ∈ {0, 1}, k = 1, . . . , K}. These are estimated in trial findings by sample 

averages {EN[y(t)|xk = ξk], PN(xk = ξk), ξk ∈ {0, 1}, k = 1, . . . , K}, where N is the number of subjects who 

receive treatment t. If subjects are randomly drawn from the population and randomly assigned to 

treatments, each component of this vector of averages has a limiting normal distribution centered on the 

corresponding population quantity. However, knowledge of these univariate limiting distributions does not 

suffice to form an asymptotically valid confidence set for {E[y[t)|x], P(x)]} or features thereof. To 

accomplish this, one needs to know the limiting multivariate normal distribution of the vector of sample 

averages. The difficulty is that the reported trial findings do not provide an empirical basis to estimate the 

covariances between the sample estimates. 

In the absence of an approach to compute confidence sets with provable good properties, an alternative 

way to examine sampling imprecision is to specify a suitable collection of hypothetical multivariate 
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distributions for [y(∙), x]. Given such a distribution, one may use Monte Carlo simulation to draw repeated 

pseudo-samples of observable data, compute repeated pseudo-estimates of identification regions for long 

mean outcomes, and examine their sampling variation across Monte Carlo repetitions. In principle, analysis 

of this sort can yield useful information. In practice, it challenging to implement given the need to 

repeatedly compute estimates of identification regions, a formidable task in the present setting. 

 

5. Discussion 

 

 We have studied identification of long mean treatment outcomes using trial findings on outcomes in 

binary subgroups. Reporting outcomes in binary subgroups is the canonical form of a broad class of 

inferential problems that may arise in practice. Covariates may be multi-valued rather than binary. Articles 

could report mean treatment outcomes conditional on more than single covariates but less than all observed 

covariates. Our abstract identification analysis can be extended to these settings. 

We have found that identification regions have simple abstract forms. Effective computation poses 

challenges, but it is tractable. Our computations indicate that the identification problem is severe when 

using reported trial findings alone. Bounded-variation assumptions have identifying power. However, one 

should keep in mind the Law of Diminishing Credibility (Manski, 2003): The credibility of inference 

decreases with the strength of the assumptions maintained.  

 Our approach relies on standardized reporting of credible subgroup analyses. Although multiple 

guidances have formulated these standards, the reporting of subgroup analyses in clinical trials remains 

problematic even in top journals (Gabler et al., 2016).  Medical journals that publish randomized trials 

should take responsibility in improving the reporting.  

 Sharing individual-level patient data could be a more beneficial solution for personalized treatment. If 

individual-level patient data becomes available, users should recognize that refinement of subgroup analysis 

to condition on multiple patient covariates diminishes sample size, reducing the sampling precision of 
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estimates. Concern with imprecision is legitimate. However, the longstanding focus of medical research on 

conventional measures of statistical significance of estimated treatment effects does not provide a sound 

reason to avoid refinement of subgroup analysis. The traditional pre-occupation with statistical significance 

stems from the use of classical hypothesis tests to compare “standard care” treatments with innovations. 

Analysis by Manski and Tetenov (2019, 2021) shows that sample sizes which are too small to yield 

statistically significant estimates of treatment effects can nevertheless usefully inform treatment choice.  

 The main impediment to access to individual-level data in medical research has been institutional. 

Sharing individual-level trial data has been rare (Iqbal et al., 2016). Efforts have been made to encourage 

data sharing (Taichman et al. 2016), but with only limited success (Taichman et al. 2017). The focus of 

such efforts has been to encourage data sharing among researchers, particularly to enable the replication of 

published findings. Replication is a worthy objective, but it only serves to corroborate findings published 

with current reporting conventions. We see a much more ambitious reason to share individual-level data, 

this being to enable clinicians and guideline developers to draw conclusions that would improve 

personalized treatment choice. 

 The Data and Code Availability Policy of the American Economic Association (2022b) states: “It is 

the policy of the American Economic Association to publish papers only if the data and code used in the 

analysis are clearly and precisely documented and access to the data and code is non-exclusive to the 

authors.” We believe that medicine could usefully emulate economics in its position on data sharing. 

Nevertheless, before data sharing in the discipline of medicine becomes widely available, our novel 

approach of partial identification with bounded variation assumptions could facilitate clinicians’ decision-

making in practice.   
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Appendix 1: Proof that Identification Region is an Interval When Outcomes are Binary 

 

To show that the identification region is the entire interval, define w(t, ξ) ≡ P[y(t) =1, x = ξ] and P(ξ) ≡ P(x 

= ξ). Assumption (1b) states that P(ξ) > 0. Hence, E[y(t)|x = ξ) = w(t, ξ)/P(ξ). 

We first show that the set of feasible values of [w(t, ξ), P(ξ)] is convex. To see this, let [w0(t, ξ), P0(ξ)] 

and [w1(t, ξ), P1(ξ)] be any two vectors that are known to be feasible. The set of feasible [w(t, ξ), P(ξ)] is 

convex if 

 

    [wc(t, ξ), Pc(ξ)]  ≡  c∙[w1(t, ξ), P1(ξ)] + (1 – c)∙[w0(t, ξ), P0(ξ)] 

 

is feasible whenever 0 ≤ c ≤ 1. Inspection of (1)−(3) shows immediately that c∙P1(ξ) + (1 – c)∙P0(ξ) is a 

feasible multivariate covariate probability. It is a bit less obvious whether c∙w1(t, ξ) + (1 – c)∙w0(t, ξ) is 

feasible. Given the definition of w(t, ξ) as a joint probability, the feasibility condition is that 

 

               c∙w1(t, ξ) + (1 – c)∙w0(t, ξ)  ≤  c∙P1(ξ) + (1 – c)∙P0(ξ)  =  Pc(ξ). 

 

This holds, so wc(t, ξ) is feasible. 

It remains to ask whether convexity of the set of feasible values of [w(t, ξ), P(ξ)] implies convexity of 

the set of feasible values of E[y(t)|x = ξ]. The answer is positive. For 0 ≤ c ≤ 1, 

 

            Ec[y(t)|x = ξ]  =  wc(t, ξ)/Pc(ξ)  =  [c∙w1(t, ξ) + (1 – c)∙w0(t, ξ)]/[c∙P1(ξ) + (1 – c)∙P0(ξ)]. 

 

The denominator is positive by assumption. Hence, the expression on the right-hand side is continuous over 

c ∈ [0,1]. It follows, by the intermediate value theorem, that as c increases from 0 to 1, Ec[y(t)|x = ξ] takes 

all values in the interval connecting E0[y(t)|x = ξ] and E1[y(t)|x = ξ].  
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Appendix 2: Computational Approach 

 

Equations (2)−(3) are differentiable. It is reasonable to conjecture that standard nonlinear local or 

global solvers might be able to handle the computational problem of finding the extrema of E[y(t)|x = ξ]. 

The issue is to find an approach that works adequately in practice. 

Exploration revealed obstacles to the reliable use of a purely local or global solver. Consider the 

former. We do not have a robust way to run a nonlinear local solver from a single starting point and be 

confident that we have found the true extremum. 

Consider the latter. The complete long vector of unknowns, {E[y(t)|x = ξ], P(x = ξ)} ξ ∊ {0, 1}K, is the 

2K+1-dimensional unit hypercube. Searching this space with a global solver, such as simulated annealing, 

quickly becomes intractable as K increases.  

 Given these considerations, we chose to use the MATLAB Global Optimization Toolbox, which 

provides a widely available and flexible set of solvers. Within the toolbox, we use the GlobalSearch solver, 

described in Matlab (2022). This hybrid local-global approach runs the fmincon local solver at multiple 

starting points in the search space. Thus, before choosing a single output value, GlobalSearch considers a 

set of possible local extrema (fmincon solutions from different starting points) and chooses the best of these. 

Importantly, fmincon accepts nonlinear constraints such as those in our equations (2). 

We provide further detail on the solver here. We discuss search for the sharp lower bound on E[y(t)|x 

= ξ}, search for the upper bound being analogous. GlobalSearch considers a local solution to be 

approximately feasible if its maximal violation of a specified constraint is smaller than a specified precision 

threshold. If the algorithm finds multiple such local solutions, it chooses the one yielding the most extreme 

value of the quantity being optimized. 

It may be the case that the algorithm finds no approximately feasible local solutions. It then seeks to 

select among values that are substantially infeasible, in the sense of violating a constraint nontrivially. In 

such cases, GlobalSearch chooses the value with the lowest score, where the score is the sum of the 
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objective function and the sum of all constraints times some constraint-weighting multiple. Matlab (2022) 

states: “[t]he multiple for constraint violations is initially 1000. GlobalSearch updates the multiple during 

the run.” No further discussion explains how this multiple is updated. Presumably it is increased if the 

solver is stuck on an infeasible value in order to find the least infeasible value in a certain local basin of 

attraction. Our analysis of the level of constraint violations of infeasible solutions seems to support this 

claim. 

Thus, it appears that GlobalSearch only chooses an infeasible point if the constraint violation is 

relatively small, and the value of the objective function is much smaller than the best feasible alternative. 

Through this heuristic, GlobalSearch seeks to provide results which, although strictly infeasible, may still 

be judged useful and reasonable. The presumption seems to be that the locally smooth structure of the 

extremum problem gives a reasonable assurance that the ‘real’ solution is nearby to where the solver found 

an infeasible solution. 
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