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Abstract 

A rich economic literature has examined the human capital impacts of disease-eliminating 
health interventions, such as the rollout of new vaccines. This literature is based on 
reduced-form approaches which exploit proxies for disease burden, such as mortality, 
instead of actual infection counts, which are difficult to measure. The researchers develop 
an epidemiological dynamic accounting model based on the susceptible-infected-
recovered (SIR) framework to derive precise measles infection shares across U.S. cohorts 
born around the introduction of the measles vaccine. Measles is highly infectious and fully 
immunizing which makes the disease an ideal candidate for epidemiological modeling. The 
authors’ epidemiological model is strongly predictive of future measles outbreaks, but the 
derived measles infection shares are not systematically related to cohorts’ later 
educational, economic, or health outcomes. The reduced-form approach, on the other 
hand, shows that these long-term outcomes strongly improved among vaccinated cohorts 
in states with high pre-vaccine measles mortality. The researchers’ results suggest that 
differences in disease severity are more relevant for long-term human capital impacts than 
raw differences in actual infection rates, supporting the reduced-form approach used in the 
economic literature. 
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1 Introduction

Epidemiological models of disease spread have become of increasing interest

for economists analyzing the dynamics and societal impacts of the COVID-19

pandemic (Murray, 2020). But there has been limited use outside the current

pandemic context, despite a rich and well-established literature in economics

studying the impacts of disease spread on human capital accumulation and

economic long-term outcomes.1 Papers from this literature typically use

reduced-form approaches that exploit public health interventions with a focus

on the general severity of the pre-intervention disease environment, which

is often proxied by pre-intervention mortality. But mortality might be a

suboptimal proxy to measure a disease’s long-term effects in the surviving

population. Epidemiological models, in comparison, have the advantage that

they can account for actual infection rates across cohorts. In this paper, we

develop an epidemiological accounting model to compare the two approaches

analyzing the long-term impacts of measles surrounding the measles vaccine

introduction to the United States in the early 1960s.

Measles provide a useful context to assess the value of epidemiological

modeling for the analysis of the economic consequences of disease spread.

First, while measles infections can lead to immediate serious illness, they are

also understood to partially eliminate previously obtained immunity to other

childhood diseases leading to higher incidence of non-measles disease after

a measles infection (Gadroen et al., 2018; Mina et al., 2015, 2019; Petrova

et al., 2019). This impact on secondary infections makes measles spread

an important driver of childhood sickness, with the potential of long-term

consequences for human capital development (Atwood, 2022; Driessen et al.,

2015; Nandi et al., 2019). Second, measles is extremely infectious with an R0

of 16 or higher (Guerra et al., 2017) and it is fully immunizing.2 The high

1See, for example, Acemoglu and Johnson (2007); Ager et al. (2018); Bhalotra and
Venkataramani (2015); Bleakley (2007, 2010); Bütikofer and Salvanes (2020); Cutler et al.
(2010); Egedesø et al. (2020); Jayachandran et al. (2010); Lazuka (2020); Lucas (2010).

2R0 refers to the number of people infected by a single contagious individual in a fully
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infectiousness implies that in an unvaccinated, fully susceptible population

virtually everyone will be infected during the first years of life. Hence there

is no socio-economic selection into infections and variation in infection rates

at a given point in time are largely driven by the recent location-specific

outbreak history. Moreover, the full immunization allows for better epidemi-

ological accounting and a more precise assignment of observed cases across

population groups. In sum, measles is understood to be a central driver of

severe childhood sickness and is relatively easily accountable, providing a

good case for the use of epidemiological modeling to measure the long-term

human capital impacts of disease spread.

Our analysis relies on measles case counts between 1950 and 1980 that are

available at the state level but without age information. We combine these

counts with demographic data on births and population sizes to build an

epidemiological dynamic accounting model which distributes observed cases

across cohorts in each state. We show that the resulting measles distribu-

tions are highly predictive of future outbreaks in line with epidemiological

Susceptible, Infectious, Recovered (SIR) models, corroborating the mechan-

ics of our accounting framework. In contrast, the economic reduced-form ap-

proach using pre-intervention measles mortality rates has no predictive power

of year-to-year outbreaks. We then use the accounting model to calculate the

shares in each birth cohort that have ever been infected with measles. Fi-

nally, we estimate the impact of measles on long-term outcomes measured

in the Census and the American Community Survey (ACS) comparing the

epidemiological modeling approach and the reduced-form approach.

Linking outcomes in adulthood to measles infections in early childhood

measured by the baseline epidemiological accounting model indicates strongly

negative impacts on a broad range of adult outcomes. Cohorts with lower

shares of people ever infected with measles have lower high school dropout

rates, higher family income, and are less dependent on welfare income and

susceptible population.
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food stamps. However, the variation in measles infection shares identifying

these effects largely covaries with overall cohort trends and these estimated

long-term effects are not robust to the inclusion of cohort fixed effects. The

economic reduced-form approach, on the other hand, yields similar estimates

as the baseline epidemiological model and is fully robust to controlling flexibly

for cohort trends. The reduced form approach also has more predictive power

of medium-term cohort mortality.

Focusing on the reduced-form approach, we extend the analysis to health

outcomes that are observed in the ACS. We find positive impacts of measles

reductions on a broad set of physical health difficulties, including work dis-

ability and difficulties with daily physical functioning.

Overall, our analysis suggests that the severity of the disease environment

is a central factor determining early life impacts that persist throughout the

life course – variation that is captured by the reduced-form approach. Dif-

ferences in overall infection rates captured by the epidemiological approach

that do not account for the severity of the disease burden are less consistently

associated with long-term outcomes. Notably, the epidemiological model per-

forms well in predicting year-to-year fluctuations in measles cases but this

variation is not the relevant margin for impacts on child development.

Given its extremely high contagiousness and full immunization, measles

provide an upper bound for the power of epidemiological modeling to mea-

sure the long-term effects of disease spread. Diseases that spread less aggres-

sively or infect people numerous times over their lifetime, such as influenza

or COVID-19, are much more difficult to model. Our analysis therefore pro-

vides strong support for the use of reduced-form approaches that focus on the

severity of the disease environment when measuring the long-term benefits

of disease reduction (Acemoglu and Johnson, 2007; Ager et al., 2018; Bhalo-

tra and Venkataramani, 2015; Bleakley, 2007, 2010; Bütikofer and Salvanes,

2020; Cutler et al., 2010; Egedesø et al., 2020; Jayachandran et al., 2010;

Lazuka, 2020; Lucas, 2010). We discuss these approaches in more detail in
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Section 3.2.

Our results further contribute to a concentrated economic and public

health literature that has focused on the human capital consequences of

measles infections. Our reduced-form results are strongly in line with Atwood

(2022) who studies the long-term effects of the measles vaccine introduction

in the United States using a similar reduced-form approach (see Section 3.2

for a more detailed discussion). Positive long-term effects of measles vaccina-

tion have also been found for developing countries, such as Ethiopia, India,

Vietnam, and Bangladesh (Driessen et al., 2015; Nandi et al., 2019).

Finally, our findings are relevant for policies aimed at increasing vacci-

nation rates in low-income countries and maintaining high coverage in high-

income countries (Bärnighausen et al., 2014b; Bloom et al., 2021; Nandi et

al., 2020). Our analysis suggests that, from a child development perspective,

vaccination efforts are particularly beneficial in contexts with high measles

and childhood mortality – conditions that are nowadays mostly found in de-

veloping countries. At the same time, measles outbreaks in high-incomes

context can be very disruptive reducing the educational inputs of those who

fall sick and among healthy students if schools have to shut down to con-

tain outbreaks.3 Overall, our analysis emphasizes the central role of measles

vaccination for child development around the world.

2 Data

Our analysis draws on several data sets. The first set of data concerns the

input parameters for the epidemiological and the reduced-form models. Our

epidemiological model is based on measles counts from weekly U.S. “notifiable

diseases” reports obtained from Project Tycho (Van Panhuis et al., 2013)

3For news reports on recent school closures in response to measles outbreaks, see,
for example: www.nytimes.com/2019/04/15/nyregion/measles-nyc-yeshiva-closing.html
and www.sciencealert.com/the-clark-county-measles-outbreak-is-now-forcing-hundreds-of-
kids-to-miss-school.
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and linked to the Vital Statistics birth counts (Bailey et al., 2016). For

vaccination rates in the introduction period we rely on the U.S.-wide numbers

provided by Orenstein and Hinman (1999) and Orenstein et al. (2004). The

reduced-form approach, instead, is based on measles mortality data from

the Vital Statistics (National Center for Health Statistics, 1959–1978). The

second set of data informs about our outcomes. Specifically, we rely on the

US Census records in 2000 and the American Community Survey (ACS)

in the years 2001–2019 (Ruggles et al., 2015) for long-term human capital

accumulation of individuals born from 1950–1980.

2.1 Measles counts, birth, and mortality data

Measles counts. The Project Tycho data (Van Panhuis et al., 2013) provide

weekly reports of all nationally notifiable diseases for U.S. cities and states

from 1888 to 2011. For the case of measles, the data contain weekly state-level

counts of measles cases and incidence rates per 100,000 inhabitants between

1928 to 2003, summing up to a total of 18,670,996 reported individual cases.

Figure 1 plots weekly incidence rates for the overall United States over time,

with the red dashed line indicating 1963, the year the measles vaccine was

first introduced. As it can be seen, a large outbreak occurred in 1964, but

incidence rates quickly dropped in the following years reaching low levels close

to zero in 1968. Only very small annual outbreaks are observed between 1970

and 1980, while there are zero reported measles cases in most weeks after 1980

with only a few isolated small spikes in the following two decades.

Figure 2 plots annual measles incidence rates across all 51 U.S. states.

There are three important observations. First, average incidence levels in

the period before the vaccine introduction are very different across states,

suggesting that there might be large differences in reporting rates. Second,

the timing of measles outbreaks (peak years) is different across states. Third,

while most states experience a strong reduction in incidence rates around the

introduction of the vaccine, there is considerable variation in the year when
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the last visible outbreak occurred.

Birth data. To build an epidemiological dynamic accounting model which

distributes observed measles cases across cohorts in each state, we also need

demographic data on births. Therefore, we rely on US county-level natality

data starting in 1915 provided by Bailey et al. (2016) and aggregate these

data to the state level.

Mortality data. For the economic reduced-form approach, instead, we

need measles mortality data. We therefore use individual-level death counts

at the state-level containing information on the cause of death from 1959 to

1979 from the National Vital Statistics System National Center for Health

Statistics.4

2.2 Long-term human capital and health outcomes

Long-term human capital data. The 2000 Census and the American Commu-

nity Surveys from 2001–2019 (Ruggles et al., 2015) provide information on

the demographics, educational attainment, labor market outcomes, welfare

dependency, and long-run health status. Demographic information contains

the birthplace as well as the year of birth.5 This information is crucial in

order to align individuals with the level of the treatment (state and year of

birth).

Educational information is measured by the respondents’ highest year of

school or degree completed. We then construct a high school completion

dummy indicating, whether an individual has finished the 12th grade or

more. As economic and labor market outcomes, we include respondents’

employment status in the week prior to the survey as well as log household

income (in real 2010 U.S. dollars).

4The cause of death is recorded according to the International Classification of Diseases
(ICD) Revision 7 in the years 1959–1967 and Revision 8 for the years 1968–1979.

5The year of birth has been calculated by subtracting age from the survey year intro-
ducing an important source of measurement error (the 2000 Census takes place on April
1, while the ACS is administered throughout the year).
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We also construct three binary measures representing welfare dependency,

indicating (1) household income below the federal poverty line (2) receipt of

welfare income at the individual level, and (3) receipt of food stamps at the

family level.

Health outcomes. The Census and the ACS include two types of measures

of respondents’ health status: a binary variable indicating work disability

(only available up to 2007), and a set of five disability questions (reporting

cognitive, ambulatory, independent living, self-care, and vision or hearing

complications) that we summarize in an equally weighted disability index.

Finally, in order to test our two models against each other for a measure

where we have good theoretical predictions, we also study mortality as an

outcome. In this analysis, we calculate two versions of mortality rates per

1,000 births by cumulating measles specific and overall deaths for the ages 0

to 5 for each specific birth cohort and diving by the number of births of the

respective birth cohort.6

2.3 Sample restrictions and descriptive statistics

We restrict our sample to individuals born from 1950 to 1980 in the United

States, excluding Alaska, Delaware, District of Columbia, Hawaii, Massachusetts,

Nevada, North Dakota, Oregon, Rhode Island, and Wyoming which are ex-

cluded due to missing data in birth counts (Alaska and Hawaii), measles mor-

tality data (Delaware, District of Columbia, Nevada, North Dakota, Oregon,

Rhode Island, and Wyoming), or measles incidence data (Massachusetts).

With these restriction we yield a sample of 21,473,682 observations. The

2000 Census is a 5% sample of the US population and therefore contributes

the most with 4,912,526 observations. The 2001–2004 ACS capture around

394,000 observations each year. Finally, the ACS from 2005–2019 are a 1-

6Using this measure as an outcome reduces our number of observations drastically, as
(1) our cells are then on the level of state-of-birth x year-of birth and as (2) we can only
include birth cohorts 1959–1973 due to data availability.
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in-100 national random sample of the population and contribute with an

average of around 1 million observations each year to our total sample.

For our analysis, we aggregate the data to cells at the state-of-birth x

year-of-birth x age level as treatment in terms of early disease environment

occurs at the state- and year-of-birth level. This aggregation results in 25,400

cells. Table 1 reports the descriptive statistics for the entire sample and the

sub-samples divided into decades.

3 Approaches and empirical strategy

3.1 Epidemiological dynamic distribution model

In this section we develop a dynamic distribution model based on the SIR

framework that distributes all measles counts observed across states and

years across cohorts defined by birth year and state. The goal is to calculate

the ratio of infections to cohort size which represents the share of a cohort

that has ever been infected by measles.

If data were available on all measles infections including age information,

calculating cohorts’ share of ever infected individuals would be trivial. But,

as typically the case for infectious disease data, reporting of measles infections

in the analyzed time period was not complete and no information on the age

at infection is available. We therefore first need to estimate states’ reporting

rates to obtain estimates of the total number of infections in a given state

in a given year. Second, we need to know how many susceptible individuals,

who have not been infected with measles before, remain in each cohort in

each year. Our notation follows a discrete model with time units representing

years and cohorts aging by one year each period.
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3.1.1 Reporting rate estimation

In the pre-vaccination era we can roughly assume that everyone is infected

with measles eventually (Finkenstädt and Grenfell, 2000). This implies that

cumulative measles cases approximately equal cumulative births (Finkenstädt

and Grenfell, 2000). We follow the existing literature and choose to link births

to measles cases focussing on the pre-vaccination years 1950–1960. The slope

of the regression of cases on births then represents the reporting rate (see

Figure A1 for an illustration in the case of Oklahoma). Figure 3 shows the

distribution of the estimated reporting rate across states. A significant share

of states has reporting rates below 10% and the top state has a rate of 38%.

The average reporting rate across states is 13%. Overall, this shows that

reporting is fairly low and heterogeneous across states, emphasizing the im-

portance accounting for these differences. Appendix Figure A2 shows the

spatial distribution of reporting rates across the United States. Reporting

rates seem somewhat lower in the South (with the exception of Texas) than

in the North, in particular the North-East. But there is no strong spatial

pattern. We can modify the reporting rate (e.g. by taking doubling the rate

or cutting it in half) or the shape of the reporting rate (linear or changing

over time) without changing the main results in a qualitative way.

3.1.2 Distributing cases across cohorts

Next, we need to distribute the total number of cases (reported cases divided

by the reporting rate) across cohorts. We assume that every person can

only get infected once and that the risk of infection is independent of an

individual’s age conditional on prior infection status.7 Hence, infections in

a given state and year are distributed across cohorts based on each cohort’s

7This implies that cases are equally distributed across all susceptibles in a state regard-
less of their age. However, more cases will be distributed to younger ages as the share of
susceptibles decreases with age. We can modify the assumption of age-independent infec-
tion risk, e.g. by assigning higher risks to younger individuals. The main results remain
qualitatively unchanged.
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share of total susceptibles in the population:

I(t, a) = I(t) ∗ S(t, a)∑
S(t, a)

(1)

with I(t) =
Ireported(t)

reportingrate
, (2)

where t and a refer to year and age, respectively, and the total infections I(t)

correspond to the ratio of reported cases divided by the estimated reporting

rate.

Unvaccinated cohorts become fully susceptible at age 1 when they lose

maternal immunization (Sato et al., 1979)8 while vaccination is modeled as

a reduction in the number of births (Keeling and Rohani, 2011):

S(t+ 1, a = 1) = births(t) × [1 − vaccination(t+ 1)] if age=1. (3)

After age 1, the stock of susceptibles within a cohort follows the following

simple law of motion:

S(t+ 1, a+ 1) = S(t, a) − I(t, a) if age>1. (4)

Finally, our dynamic distribution model needs to start in some period,

and in this initial period we do not know the number of susceptibles re-

maining in cohorts that are older than 1, as infections in prior years are not

observed. Our initial time period (1935) lies in the pre-vaccination era and

we can approximate the share of susceptibles across age groups by average

8For a review on passive transmission of antibodies against measles in newborns see
Leuridan and Van Damme (2007). Interestingly, immunization duration differs for new-
borns from mothers who naturally acquired measles or mothers who acquired antibodies
vaccine-induced . While in our model we rely on passive immunization from mothers who
were naturally infected, women vaccinated with live attenuated measles vaccine generally
pass on shorter protection against measles to their children up to the age of 8 months
(Lennon and Black, 1986).
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susceptibility curves (AS(a)) from pre-vaccination era studies, calibrated to

match an overall population susceptibility rate of 2.5 percent (Orenstein et

al., 1985).9 Hence, susceptibles across age in the initial period are determined

by:

S(t = 1, a) = pop(t = 1, a) ∗ AS(a) (5)

3.1.3 Calculating cohorts’ share ever infected

Having distributed all infections across cohorts, we then sum up infections

over time within each cohort and divide by cohort size. This then gives us

the share of individuals ever infected. We run the model at the state level

though we use U.S.-wide vaccination rates as there is no state-level data on

the vaccine rollout. For a graphical overview of states’ share ever infected

see Appendix Figure A3.

3.2 Economic “reduced-form” approach

A rich and prominent literature in economics has accumulated evidence that

the early life disease environment has strong and persistent impacts on the

population’s human capital accumulation. Studies from that literature have

in common that they typically identify the long-term effects of disease spread

by exploiting some type of health intervention or sudden society-wide health

improvement and interacting it with a measure of baseline disease exposure

(often mortality). These approaches typically are build on a version of the

following regression model

Ys,c = α + γ(Tprec × Pres) + θs + δc + εs,c , (6)

9In the study by Orenstein et al. (1985), the data covers the pre-vaccine era from three
different locations and dates. Results are all basically identical, so that there is no reason
to suspect that that profile would look much different for any other location or time in
the pre-vaccine era.
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where s refers to state (or region, or country), c is the birth cohort (or

simply time), Pres is a proxy of the disease exposure (e.g. mortality) during

the pre-intervention, Tprec is a dummy for the pre-intervention period, and

θs and δc are state and cohort fixed effects.

Prominent economic studies using such an approach are, among others,

Acemoglu and Johnson (2007), Ager et al. (2018), Bhalotra and Venkatara-

mani (2015), Bleakley (2007), Bleakley (2010), Bütikofer and Salvanes (2020),

Cutler et al. (2010), Egedesø et al. (2020), Jayachandran et al. (2010), Lazuka

(2020), and Lucas (2010).

For instance, Acemoglu and Johnson (2007) interact major international

health improvements in the 1940s with pre-1940 mortality rates from 15 lead-

ing infectious diseases to study life expectancy on economic performance.

Bleakley (2007), more specifically, combines pre-eradication distribution of

hookworm disease with the hookworm-eradication campaign to show the ben-

eficial impact on education while Bleakley (2010), Cutler et al. (2010) and

Lucas (2010) obtain plausible exogenous variation in child health by relying

on malaria eradication in the US, India, or Paraguay and Sri Lanka to study

the impact on adult labor market outcomes, consumption, and educational

attainment.

In the same vein Ager et al. (2018) combine pre-vaccination variation

in smallpox mortality across Swedish counties with the introduction of the

smallpox vaccine, while Bütikofer and Salvanes (2020) and Egedesø et al.

(2020) interact tuberculosis infection rates and mortality with tuberculosis

testing and vaccination in Norway and tuberculosis dispensaries in Danish

cities, respectively. Finally, Bhalotra and Venkataramani (2015), Jayachan-

dran et al. (2010), and Lazuka (2020) exploit the introduction of sulfa drugs,

a medical innovation that reduced exposure to pneumonia in infancy, inter-

acted with pre-innovation pneumonia mortality to examine the long-term

impacts on educational and labor market outcomes of affected cohorts.

In recent contemporaneous work, Atwood (2022) examines the long-run
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effects of measles vaccination on earnings and employment interacting the

measles vaccine introduction with pre-vaccine levels of reported measles in-

cidence. The long-term effects reported in Atwood (2022) are qualitatively

and quantitatively very close to the effects we estimate despite our use of

pre-vaccine measles mortality rather than pre-vaccine measles incidence in

our baseline economic reduced-form approach. The similarity of our esti-

mates suggests that, in the case of measles, reported incidence rates are a

good proxy for disease severity and mortality.

Exceptions in terms of their empirical designs are provided by Driessen

et al. (2015) and Nandi et al. (2019), who study measles vaccination impacts

on child development in Bangladesh, Ethiopia, India, and Vietnam. Driessen

et al. (2015) exploit a slow, staggered roll-out of the measles vaccine across

different areas in Bangladesh allowing to study an area acting as a control

group while only being treated several years after. Nandi et al. (2019) exploit

quasi-experimental variation in vaccine coverage in low-income countries us-

ing longitudinal data that includes information on vaccination status. While

these designs are not feasible in most developed countries where vaccine

coverage is near universal and the initial roll-out has been fast, these stud-

ies provide important evidence of positive vaccination impacts on a broad

range of developmental outcomes, including child anthropometry, cognition,

schooling enrolment, and test scores.

In this paper, we base our reduced-form specification on the most com-

mon approach used in the literature exploiting local differences in measles

mortality prior to the introduction of the vaccine interacted with the vac-

cine roll-out. Specifically, we calculate state-level measles mortality for the

age groups 0–5 averaged across the years 1959–1963 and interact them with

the introduction of the measles vaccine in the United States. States individ-

ual pre-vaccine mortality rates are scaled so that the overall average for the

United States equals one.
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3.3 Empirical strategy

To examine the relationship between the early childhood disease environment

and adult long-term outcomes, we estimate two types of linear regressions

for age group a in birth cohort c in state of birth s. Specifically, in case of

the epidemiological model the equation looks as follows:

Ysca = α + γShareEverInfectedsc + βa + δc + θs + εsca , (7)

where ShareEverInfectedsc is the share of each cohort ever infected with

measles derived from the epidemiological distribution model. For the reduced-

form approach, we adjust Equation (7) to the following version:

Ysca = α + γ(Tprec × Pres) + βa + δc + θs + εsca , (8)

where Pres corresponds to states’ measles mortality (ages 0–5, in 1959–1963)

and Tprec is a dummy equal to one for cohorts born in or prior to 1963, the

year of the measles vaccine introduction.

In both equations, Ysca stands for the different averaged individual long-

term outcomes, such as high school completion, employment status, total

household income (in logarithmic terms), poverty status, receiving any wel-

fare transfers or food stamps as well as health outcomes such as a disability

status at work and a disability index comprised of impairments in 5 daily-life

dimensions. Furthermore, we control for age, birth cohort, and state of birth

fixed effects by βa, δc, and θs, respectively. We also conduct an alternative

specification where we control for cohort polynomials instead of cohort fixed

effects. Our coefficient of interest is γ, representing the estimate of the effect

of measles exposure in early childhood. Standard errors are clustered at the

state of birth level (Bertrand et al., 2004) and observations are weighted by

cohort size.
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Combining both approaches, we also estimate a Bartik-type regression:

Ysca = α + γ(Pres × ShareEverInfectedsc) + βa + δc + θs + εsca , (9)

where Pres is now multiplied with the ShareEverInfectedsc. All other

variables are defined as above.

Figure 4 shows the epidemiological “share-ever-infected” measure, the

reduced-form measure, and the combined Bartik measure for five selected

states and averaged across the United States. As it can be seen, the variation

in the epidemiological measure is driven entirely by the different timing in the

reduction of infection shares. All states start with a share close to one and

end with a share close to zero, but some states experience reductions earlier

than others. The variation in the reduced-form measure, on the other hand,

is entirely driven by pre-existing level differences while the time variation is

uniform across all states. The Bartik measure combines the two types of

variations.

4 Results

4.1 Preditive power of epidemiological measure

Before turning to our main results, we first explore the predictive power of

our dynamic distribution model. Our distribution model is based on the

SIR framework that is centred around the key assumption that outbreaks

are driven by susceptibles who drop out of the susceptible pool once they

have been infected. A larger pool of susceptibles in one period therefore

increases the risk of an outbreak in the following period. An outbreak in a

given period, on the other hand, leads to a smaller pool of susceptibles in

the following period. In Table 2 we test these predictions using state-specific

annual susceptible counts generated from our dynamic distribution model.

The table shows coefficients from a regression of state-level measles counts
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on lags and leads of susceptible counts while controlling for state and year

fixed effects. In line with the mechanics of the SIR model, lagged susceptible

counts strongly predict measles outbreaks (column 1) while these outbreaks

are strongly negatively related to susceptible counts in the subsequent period

(column 2). Note that our dynamic distribution model generates suscepti-

ble based on lagged measles outbreaks, hence the relationship in column (2)

is mechanical. However, the information about future outbreaks does not

feed into susceptible counts and therefore the result in column (1) shows the

predictive power of the model. Column (3) shows the predictive power of

the lagged susceptible measure when it is split into deciles. Columns (4–9)

test the predictive power within subperiods of our data. Remarkably, our

model is predictive of future outbreaks during the pre-vaccine era (columns

4–5), as well as during the period surrounding the introduction of the vac-

cination (columns 6–7) and during the post-vaccine era when measles were

largely eliminated and only idiosyncratic minor outbreaks occurred (columns

8–9). These results validate our model across three periods with very distinct

measles environments.

Appendix Table A1 compares the predictive power of the dynamic dis-

tribution model to the reduced-form measure. As shown in column (3), the

reduced form measure has no predictive power of future outbreaks and is

also not correlated with lagged outbreaks. Moreover, since the measure only

changes in the year of the measles introduction and the regressions include

state fixed effects, the measures’ impact cannot be estimated in the pre- and

the post-vaccine era (columns 6 and 10).

To sum up, our epidemiological distribution model generates a distribu-

tion of measles cases that is highly predictive of measles outbreaks while

the reduced-form measure is uncorrelated with year-to-year fluctuations in

measles cases.
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4.2 Long-term effects on human capital and health

outcomes

Figures 5–7 compare the epidemiological approach with the reduced-form

approach as well as the combined Bartik approach in terms of the long-term

impacts on human capital outcomes. The figures show regression coefficients

based on Equations (7)–(9), both for versions with cohort quadratic trends

and cohort fixed effects. Corresponding numerical results are reported in

Tables 3–5.

The top left panel of Figure 5 plots the estimated effects of early life

measles exposure on high school completion. The darker colored bars show

the estimates resulting from regressions including quadratic cohort trends

and they indicate similar effects across all three approaches. The coefficient

for the epidemiological model is -0.539 with a standard error of 0.196 (Table

3, Panel A1, column 1), indicating that a cohort that has been fully exposed

to measles early in life (ever infected share equals one) has a 0.54 percentage

points lower high school completing rate than a cohort with zero exposure.

The point estimate from the reduced form specification (Table 3, Panel B1,

column 1), suggests that states with a pre-vaccination era measles mortality

around the U.S. average at that time experienced a significant increase in

high school completion of about 0.85 percentage points in response to the

introduction of the vaccine. The Bartik specification (Table 3, Panel C1,

column 1) which combines the two approaches results in a similar point

estimate, indicating that decreasing the share of individuals ever infected

with measles in a cohort from one to zero, in a state with the average pre-

vaccination measles rate, significantly increases high school completion by

1.05 percentage points. When we control for cohort fixed effects instead of

quadratic trends, the approaches based on the reduced-form measure result in

very similar estimates (Table 3, Panels B2 and C2, column 1). The estimate

from the epidemiological model (Table 3, Panel A2, column 1), however, flips

sign and looses in significance when cohort fixed effects are included.
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The pattern for high school completion is observed similarly for log house-

hold income, poverty, welfare income receipt, and food stamp receipt. In the

specifications with cohort trends all approaches indicate positive impacts of

reducing measles exposure by improving these long-term outcomes. While

the reduced form approach is robust to the inclusion of cohort fixed effects,

the epidemiological modeling approach is, however, not. An exception is the

unemployment rate which is not consistently affected in the specifications

with cohort fixed effects.

Figure 6 and Table 4 show the same set of regression results for health

measures that are reported in the Census and ACS. Again the reduced-

form and the Bartik approach result in very similar point estimates that are

robust to the inclusion of cohort fixed effects, indicating negative long-term

health consequences of early life measles exposure. For example, the reduced

form specification with cohort fixed effects indicates that the measles vaccine

introduction reduced work disability, cognitive disability, self-care disability,

independent living difficulties, and vision or hearing difficulties by 0.8, 0.4,

0.3, 0.5, and 0.5 percentage points, respectively. Relative to the sample

mean of these outcomes, the effect sizes range between 8 and 12.8 percent.

The epidemiological modeling approach, on the other hand, is not robust to

the inclusion of different cohort effects. Surprisingly, the approach results

in significantly negative health impacts (i.e. a higher share of ever infected

individuals is associated with less disability and fewer health difficulties).

The negative long-run impacts of early life measles exposure on human

capital and health outcomes estimated via the reduced-form approach are in

line with the long-term disease impacts known from the economic literature

while it is more difficult to reconcile the estimates resulting from the epi-

demiological modeling approach, especially the reverse health impacts. At

the same time, the economic literature relies on similar reduced form ap-

proaches, so the comparability of results does not provide an independent

assessment. We therefore analyse two additional outcomes that are known
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to be directly linked to measles infection rates: Measles mortality and overall

mortality in early childhood (ages 0–5). While measles mortality is obviously

linked to measles infections, the epidemiological literature has argued that

measles infections also increase the risk of childhood mortality from other

diseases (Mina et al., 2015).

Figure 7 (estimates reported in Table 5) shows that the reduced-form

approach indeed indicates a significantly positive impact of higher disease

exposure both on measles mortality and overall childhood mortality. The

epidemiological model approach, on the other hand does not result in a sig-

nificant effect for the cohort trends model while it indicates an implausible

mortality reduction in response to higher measles infection shares when co-

hort fixed effects are controlled for. Notice that the reduced-from measure

is based on pre-vaccination measles mortality and therefore more directly

linked to mortality changes. But there is no reasonable explanation why a

cohort’s share of individuals ever infected with measles should be negatively

associated with childhood mortality. The mortality results therefore support

the notion that the epidemiological modeling approach provides variation in

measles infections that are difficult to disentangle from other factors driving

cohort outcomes.

4.3 Alternative epidemiological modeling assumptions

Finally, one might wonder to which extent the effect patterns observed for the

epidemiological approach depend on the assumptions built into the dynamic

distribution model. Appendix Figure A5 plots the estimated impacts of the

share ever infected on high school graduation and log household income across

12 models with varying alternative parameter specifications. In particular,

we vary the initial share of susceptibles in the population (S0), we relax

the assumption that infection rates among susceptibles are independent of

age (assuming higher infection rates below age 6), and we allow for different

functional forms when estimating the reporting function (default is the mean
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reporting rate, and we show results allowing for a linear time trend, a local

polynomial trend (LOESS), and a spline function). As it can be seen in

Figure A5, estimates are very similar across the different models and the

inclusion of cohort fixed effects has a similar impact on the effect pattern.

These results suggest that the dynamic accounting model is not sensitive to

the core assumptions.

5 Discussion and conclusion

This paper uses an epidemiological modeling and an economic reduced-form

approach to measure the long-term impacts of early-life measles exposure

around the introduction of the measles vaccine in the United States. The

reduced-form approach reveals large improvements in educational, labor mar-

ket, and health outcomes in adulthood among cohorts born after the vaccine

introduction in states with historically high measles mortality. No consistent

effect patterns are detected using the epidemiological modeling approach

which exploits differences in cohorts’ share of individuals that were ever in-

fected with measles. These results suggest that differences in the severity of

measles infections, proxied by measles mortality, matter more for long-term

outcomes than the difference in mere infection rates itself.

The long-term impacts of early life measles exposure are in line with the

economic literature that has documented, among others, long-term conse-

quences of exposure to hookworm (Bleakley, 2010), malaria (Cutler et al.,

2010; Lucas, 2010), and tuberculosis (Bütikofer and Salvanes, 2020; Egedesø

et al., 2020). Our finding that the severity of the disease environment matters

more than the measles infection rate itself is also in line with the notion that

measles infections are particularly harmful for children as they can eliminate

previously obtained immunity to other diseases (Gadroen et al., 2018; Mina

et al., 2015, 2019; Petrova et al., 2019). This mechanism should matter most

in a severe disease environment with high childhood mortality not only for
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measles but also other childhood diseases.

Our estimated impacts are also very much in line with the contemporane-

ous analysis of Atwood (2022). We find that the introduction of the vaccine

lead to a 2.7 percent increase in log total family income, a reduction of the

poverty rate by 5.7 percent and a non-significant reduction of unemployment

of 0.1 percent, while Atwood (2022) reports a family income increase of 1.7

percent, a poverty reduction of 7.3 percent, and an increase of 0.3 percent

for employment. A key difference in our approach is that we use pre-vaccine

measles mortality as a proxy for disease burden while Atwood (2022) uses

pre-vaccine measles cases that are not adjusted for reporting rate differences.

The similarity of our reduced-form estimates suggests that, at least in the

context of the pre-vaccine United States, reporting rates can be used as a

proxy for mortality and disease burden (presumably as more severe cases of

measles were more likely to be reported). This insight further emphasizes

that the epidemiological distribution model, which fully adjusts for differ-

ences in reporting rates across locations, focuses on a very different margin.

Despite the discovery of an effective measles vaccine over half a century

ago and its world-wide dissemination, measles outbreaks have been rising

again over the past decade. The COVID-19 pandemic is expected to fur-

ther increase vaccination hesitancy and the risk of future measles outbreaks

(Roberts, 2020). Our analysis documents large life-long welfare gains among

cohorts that benefited from the introduction of the measles vaccine in the

United States emphasizing the importance of a continued vaccination effort

(Bärnighausen et al., 2014a; Bloom et al., 2018). However, our comparison of

epidemiological and reduced-form approaches indicates that vaccination ben-

efits in terms of long-term human capital impacts are particularly large in en-

vironments with severe childhood disease burdens. Our results are therefore

particularly supportive of vaccination efforts in low-income countries with

high childhood mortality (Bärnighausen et al., 2014b; Nandi et al., 2020).
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Figures and Tables

Figure 1: Overall US measles incidence rate
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Notes: Overall US measles incidence rate per 100,000 based on weekly reports from 1928
to 2003 in all US states (weighted with interpolated population per state in 1963 to get
the overall incidence rate, where population data per state were obtained from the US
Census Bureau). The vertical dashed line indicates the year of introduction of the measles
vaccine in 1963.
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Figure 3: Distribution of state-level reporting rates
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Notes: This figure shows the distribution of reporting rates across U.S. states estimated
using the epidemiological approach described in Section 3.1.
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Figure 4: Share ever infected and pre-vaccine variation in measles mortality
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Notes: This figure depicts the three different measures used in the analysis for the US (blue
line) and 5 sample states (Arkansas, California, Florida, New York, and Washington).
Measures are scaled so that the overall US measure moves from 1 to 0 from 1950 to
1980. Panel A shows the share infected derived from the epidemiological (Epi.) model.
Panel B shows the interaction of the states’ measles mortality (ages 0—5, in 1959—1963)
with a dummy equal to one for cohorts born prior (<=) 1963 (year of measles vaccine
introduction), the reduced-form (RF) measure. Panel C shows a combination of both
approaches — replacing the dummy in the RF measure with the share infected from the
Epi. model — the Epi.-RF Bartik measure.
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Figure 5: Effects of early life measles exposure on labor market and welfare
outcomes
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Notes: This figure shows point estimates including 95%-confidence intervals for the de-
pendent variable as indicated in each subfigure from linear regressions in the full sample
aggregated to cells at the state-of-birth x year-of-birth x age level and weighted by the
cell’s population. Explanatory variables are the share infected derived from the epidemi-
ological (Epi.) model shown in red, the interaction of the states’ measles mortality (ages
0—5, in 1959—1963) with a dummy equal to one for cohorts born prior (<=) 1963 (year
of measles vaccine introduction) for the reduced-form (RF) model shown in violet, and a
combination of both approaches for the Epi.-RF Bartik regression shown in green. Re-
gressions either include cohort trends — linear and quadratic terms — as indicated in rich
colors or cohort fixed effects as indicated in pale colors. All estimations further control for
state and age fixed effects. Standard errors are clustered at the state level.

32



Figure 6: Effects of early life measles exposure on health outcomes
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Notes: This figure shows point estimates including 95%-confidence intervals for the de-
pendent variable as indicated in each subfigure from linear regressions in the full sample
aggregated to cells at the state-of-birth x year-of-birth x age level and weighted by the
cell’s population. Explanatory variables are the share infected derived from the epidemi-
ological (Epi.) model shown in red, the interaction of the states’ measles mortality (ages
0—5, in 1959—1963) with a dummy equal to one for cohorts born prior (<=) 1963 (year
of measles vaccine introduction) for the reduced-form (RF) model shown in violet, and a
combination of both approaches for the Epi.-RF Bartik regression shown in green. Re-
gressions either include cohort trends — linear and quadratic terms — as indicated in rich
colors or cohort fixed effects as indicated in pale colors. All estimations further control for
state and age fixed effects. Standard errors are clustered at the state level.
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Figure 7: Effect of early life measles exposure on medium-run mortality (ages
0–5)
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Notes: This figure shows point estimates including 95%-confidence intervals for the de-
pendent variable as indicated in each subfigure from linear regressions in the full sample
aggregated to cells at the state-of-birth x year-of-birth x age level and weighted by the
cell’s population. Explanatory variables are the share infected derived from the epidemi-
ological (Epi.) model shown in red, the interaction of the states’ measles mortality (ages
0—5, in 1959—1963) with a dummy equal to one for cohorts born prior (<=) 1963 (year
of measles vaccine introduction) for the reduced-form (RF) model shown in violet, and a
combination of both approaches for the Epi.-RF Bartik regression shown in green. Re-
gressions either include cohort trends — linear and quadratic terms — as indicated in rich
colors or cohort fixed effects as indicated in pale colors. All estimations further control for
state and age fixed effects. Standard errors are clustered at the state level.
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Table 1: Descriptive Statistics

(1) (2) (3) (4)
1950–1960 1961–1970 1971–1980 Total
Mean/SD Mean/SD Mean/SD Mean/SD

Epi. measure (share infected) 0.925 0.328 0.021 0.441
(0.158) (0.308) (0.027) (0.429)

RF measure 1.133 0.340 0.000 0.512
(0.593) (0.613) (0.000) (0.690)

Epi.-RF Bartik measure 1.046 0.358 0.021 0.493
(0.590) (0.420) (0.027) (0.606)

High school completion 92.362 92.613 93.012 92.653
(4.093) (3.444) (3.486) (3.710)

Unemployed 3.286 4.188 5.242 4.208
(1.810) (2.030) (2.630) (2.317)

Log HH income 10.986 11.029 10.839 10.952
(0.171) (0.158) (0.318) (0.240)

Poverty 8.062 8.462 11.205 9.205
(3.340) (3.361) (5.861) (4.540)

Any welfare income 1.231 1.643 2.020 1.618
(0.850) (1.033) (1.301) (1.119)

Any food stamps 8.363 10.074 12.518 10.255
(4.201) (4.356) (5.021) (4.842)

Work disability 10.308 6.633 4.577 7.274
(3.718) (2.897) (2.491) (3.919)

Disability Index 6.641 4.388 2.814 4.680
(2.304) (1.817) (1.208) (2.436)

Cognitive difficulty 5.943 5.031 4.139 5.067
(2.143) (2.075) (1.826) (2.155)

Self-care difficulty 3.525 2.205 1.258 2.368
(1.678) (1.379) (0.991) (1.676)

Indep. living difficulty 5.802 4.116 2.863 4.310
(2.401) (2.024) (1.593) (2.380)

Vision/hearing difficulty 6.149 3.803 2.337 4.163
(3.156) (2.192) (1.483) (2.883)

Number of cohorts
(year of birth x state of birth) 451 410 410 1,271

Notes: Columns (1) – (3) show descriptive statistics for the sub-samples born from 1950–
1960, 1961–1970, 1971–1980, respectively and column (4) shows the descriptive statistics
for the overall population. The overall population includes individuals born in the years
1950–1980 in the US and sampled in the Census 2000 or the American Community Surveys
2001–2019. The data is aggregated to cells at the state-of-birth x year-of-birth x age level.
The variable on having a work disability is only available up to the year 2007. Information
on receiving food stamps, instead, is only available starting from 2005.

35



T
ab

le
2:

P
re

d
ic

ti
on

P
ow

er
of

th
e

D
y
n
am

ic
D

is
tr

ib
u
ti

on
M

o
d
el

D
ep

en
d

en
t

v
a
ri

a
b

le
1
9
5
0
-1

9
8
0

1
9
5
0
-1

9
6
0

1
9
6
1
-1

9
7
0

1
9
7
1
-1

9
8
0

M
ea

sl
es

ca
se

s
p

er
ca

p
it

a
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)

S
u

sc
ep

ti
b

le
s

(t
-1

)
0
.0

4
0
*
*

0
.2

8
7
*
*
*

0
.2

2
8
*
*
*

0
.1

4
1
*
*

(0
.0

1
6
)

(0
.0

8
0
)

(0
.0

2
1
)

(0
.0

6
6
)

S
u

sc
ep

ti
b

le
s

(t
+

1
)

-0
.0

4
8
*
*
*

(0
.0

1
1
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

2
0
.0

0
3

0
.0

0
8
*
*

-0
.0

0
0

(0
.0

0
2
)

(0
.0

0
3
)

(0
.0

0
1
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

3
0
.0

0
2

0
.0

1
0
*
*

0
.0

0
3

0
.0

0
0

(0
.0

0
2
)

(0
.0

0
5
)

(0
.0

0
3
)

(.
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

4
0
.0

0
3

0
.0

1
8
*
*

0
.0

0
4

0
.0

0
3
*
*
*

(0
.0

0
3
)

(0
.0

0
7
)

(0
.0

0
3
)

(0
.0

0
1
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

5
0
.0

0
2

0
.0

1
7
*
*

0
.0

0
6
*
*

0
.0

0
4
*
*
*

(0
.0

0
3
)

(0
.0

0
7
)

(0
.0

0
3
)

(0
.0

0
1
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

6
0
.0

0
4

0
.0

2
3
*
*
*

0
.0

1
1
*
*
*

0
.0

0
5
*
*
*

(0
.0

0
3
)

(0
.0

0
7
)

(0
.0

0
3
)

(0
.0

0
1
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

7
0
.0

0
5
*

0
.0

3
2
*
*
*

0
.0

1
5
*
*
*

0
.0

0
5
*
*
*

(0
.0

0
3
)

(0
.0

0
6
)

(0
.0

0
3
)

(0
.0

0
2
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

8
0
.0

0
7
*
*

0
.0

3
9
*
*
*

0
.0

2
0
*
*
*

0
.0

0
6
*
*
*

(0
.0

0
3
)

(0
.0

0
8
)

(0
.0

0
4
)

(0
.0

0
2
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

9
0
.0

0
5

0
.0

1
6
*
*
*

0
.0

2
2
*
*
*

0
.0

0
7
*
*
*

(0
.0

0
4
)

(0
.0

0
5
)

(0
.0

0
4
)

(0
.0

0
2
)

1
0

q
u

a
n
ti

le
s

o
f

s
la

g
=

1
0

0
.0

0
8
*
*

0
.0

3
1
*
*
*

0
.0

3
4
*
*
*

0
.0

0
8
*
*
*

(0
.0

0
4
)

(0
.0

0
6
)

(0
.0

0
4
)

(0
.0

0
3
)

R
2

0
.5

6
6

0
.5

5
1

0
.5

6
8

0
.2

2
5

0
.2

3
1

0
.6

5
5

0
.6

2
8

0
.3

9
0

0
.3

3
1

O
b

se
rv

a
ti

o
n

s
1
,2

3
0

1
,2

3
0

1
,2

3
0

4
1
0

4
1
0

4
1
0

4
1
0

4
1
0

4
1
0

N
o
te
s
:

T
h

is
ta

b
le

te
st

s
m

ea
sl

es
o
u

tb
re

a
k

p
re

d
ic

ti
o
n

s
u

si
n

g
la

g
s

a
n

d
le

a
d

s
o
f

st
a
te

-s
p

ec
ifi

c
a
n

n
u

a
l

su
sc

ep
ti

b
le

co
u

n
ts

g
en

er
a
te

d
fr

o
m

th
e

d
y
n

a
m

ic
d

is
tr

ib
u

ti
o
n

m
o
d

el
.

T
h

e
d

ep
en

d
en

t
v
a
ri

a
b

le
a
re

th
e

m
ea

sl
es

ca
se

s
p

er
ca

p
it

a
fr

o
m

1
9
5
0
–
1
9
8
0

(c
o
lu

m
n

s
1
—

3
)

a
n

d
in

th
e

su
b

p
er

io
d

s
a
s

in
d

ic
a
te

d
in

th
e

to
p

ro
w

.
E

x
p

la
n

a
to

ry
v
a
ri

a
b

le
s

a
re

th
e

su
sc

ep
ti

b
le

s
in

th
e

y
ea

rs
(t

-1
)

a
n

d
(t

+
1
)

a
s

d
er

iv
ed

fr
o
m

th
e

ep
id

em
io

lo
g
ic

a
l

(E
p

i.
)

m
o
d

el
,

a
n

d
d

ec
il
es

o
f

th
e

su
sc

ep
ti

b
le

s
in

th
e

y
ea

rs
(t

-1
).

A
ll

re
g
re

ss
io

n
s

co
n
tr

o
l

fo
r

co
h

o
rt

a
n

d
st

a
te

fi
x
ed

eff
ec

ts
.

S
ta

n
d

a
rd

er
ro

rs
a
re

cl
u

st
er

ed
a
t

th
e

st
a
te

le
v
el

.
*
*
*
/
*
*
/
*

in
d

ic
a
te

st
a
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

a
t

th
e

1
%

/
5
%

/
1
0
%

-l
ev

el
.

36



Table 3: Effects of early life measles exposure on labor market and welfare
outcomes

(1) (2) (3) (4) (5) (6)
Dependent variable: High Un- ln total Poverty Any family Food

school employed family income welfare inc. stamps

Panel A1: Epi. model and cohort trends
Share infected -0.539∗∗∗ 0.316∗∗∗ -0.037∗∗∗ 0.970∗∗∗ 0.050 1.160∗∗∗

(0.196) (0.072) (0.008) (0.136) (0.046) (0.154)

R2 0.722 0.396 0.905 0.747 0.325 0.682
Panel A2: Epi. model and cohort fixed effects
Share infected 0.795∗ 0.019 0.043∗∗∗ -0.275 -0.200∗∗ 0.012

(0.410) (0.101) (0.011) (0.164) (0.088) (0.220)

R2 0.730 0.398 0.909 0.751 0.328 0.686

Panel B1: RF model and cohort trends
Pre measles mort -0.846∗∗∗ 0.105∗ -0.030∗∗∗ 0.576∗∗∗ 0.157∗∗∗ 0.525∗∗∗

x Pre (0.187) (0.053) (0.007) (0.106) (0.035) (0.094)

R2 0.729 0.395 0.907 0.748 0.328 0.682
Panel B2: RF model and cohort fixed effects
Pre measles mort -1.079∗∗∗ 0.005 -0.027∗∗ 0.503∗∗ 0.234∗∗∗ 0.329∗∗

x Pre (0.374) (0.112) (0.013) (0.207) (0.082) (0.162)

R2 0.736 0.398 0.909 0.752 0.331 0.686

Panel C1: Epi.-RF Bartik and cohort trends
Pre measles mort -1.051∗∗∗ 0.130 -0.035∗∗∗ 0.774∗∗∗ 0.211∗∗∗ 0.702∗∗∗

x Share infected (0.295) (0.090) (0.011) (0.171) (0.061) (0.158)

R2 0.728 0.395 0.906 0.748 0.328 0.682
Panel C2: Epi.-RF Bartik and cohort fixed effects
Pre measles mort -0.922∗∗ 0.022 -0.019 0.469∗∗ 0.204∗∗ 0.351∗∗

x Share infected (0.360) (0.115) (0.013) (0.217) (0.077) (0.170)

R2 0.734 0.398 0.906 0.751 0.330 0.686
Observations 25,420 25,420 25,420 25,420 25,420 24,149
Mean dep. var 93.03 4.359 10.99 8.805 1.621 9.771

Notes: Linear regressions in the full sample aggregated to cells at the state-of-birth x year-of-birth
x age level and weighted by the cell’s population. Dependent variables are indicated in the top row.
Explanatory variables are the share infected derived from the epidemiological (Epi.) model in Panel
A, the interaction of the states’ measles mortality (ages 0—5, in 1959—1963) with a dummy equal
to one for cohorts born prior (<=) 1963 (year of measles vaccine introduction) for the reduced-form
(RF) model in Panel B, and a combination of both approaches for the Epi.-RF Bartik regression
in Panel C. Regressions in subpanels 1 include cohort trends (linear and quadratic terms) and in
subpanels 2 control for cohort fixed effects. All panels further control for state and age fixed effects.
Standard errors are clustered at the state level. ***/**/* indicate statistical significance at the
1%/5%/10%-level.
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Table 4: Effects of early life measles exposure on health outcomes

(1) (2) (3) (4) (5) (6)
Dependent variable: Work Disability Cognitive Self-care Indep. Vision

disability Index difficulty difficulty living diff. /hearing diff.

Panel A1: Epi. model and cohort trends
Share infected 0.091 0.014 0.196∗∗ 0.017 0.075 -0.302∗∗∗

(0.186) (0.083) (0.078) (0.056) (0.084) (0.080)

R2 0.635 0.843 0.535 0.669 0.667 0.807
Panel A2: Epi. model and cohort fixed effects
Share infected -0.928∗∗∗ -0.499∗∗∗ -0.444∗∗∗ -0.231∗ -0.409∗∗ -0.539∗∗∗

(0.274) (0.179) (0.136) (0.115) (0.170) (0.153)

R2 0.639 0.845 0.539 0.670 0.668 0.809

Panel B1: RF model and cohort trends
Pre measles mort 0.648∗∗∗ 0.338∗∗∗ 0.325∗∗∗ 0.188∗∗ 0.317∗∗∗ 0.187∗

x Pre (0.219) (0.115) (0.087) (0.072) (0.101) (0.102)

R2 0.638 0.846 0.539 0.671 0.669 0.808
Panel B2: RF model and cohort fixed effects
Pre measles mort 0.825∗∗ 0.573∗∗ 0.416∗∗ 0.318∗∗ 0.509∗∗ 0.482∗∗

x Pre (0.347) (0.223) (0.172) (0.142) (0.202) (0.182)

R2 0.641 0.848 0.541 0.672 0.671 0.811

Panel C1: Epi.-RF Bartik and cohort trends
Pre measles mort 0.753∗∗ 0.440∗∗ 0.386∗∗ 0.238∗ 0.405∗∗ 0.265
x Share infected (0.341) (0.195) (0.144) (0.124) (0.170) (0.175)

R2 0.637 0.846 0.538 0.670 0.669 0.808
Panel C2: Epi.-RF Bartik and cohort fixed effects
Pre measles mort 0.624 0.450∗ 0.308∗ 0.246 0.395∗ 0.371∗

x Share infected (0.372) (0.239) (0.180) (0.152) (0.209) (0.209)

R2 0.639 0.846 0.538 0.671 0.670 0.810
Observations 10,168 25,420 25,420 25,420 25,420 25,420
Mean dep. var 7.301 4.635 4.973 2.403 4.338 3.992

Notes: Linear regressions in the full sample aggregated to cells at the state-of-birth x year-of-birth
x age level and weighted by the cell’s population. Dependent variables are indicated in the top row.
Explanatory variables are the share infected derived from the epidemiological (Epi.) model in Panel
A, the interaction of the states’ measles mortality (ages 0—5, in 1959—1963) with a dummy equal
to one for cohorts born prior (<=) 1963 (year of measles vaccine introduction) for the reduced-form
(RF) model in Panel B, and a combination of both approaches for the Epi.-RF Bartik regression
in Panel C. Regressions in subpanels 1 include cohort trends (linear and quadratic terms) and in
subpanels 2 control for cohort fixed effects. All panels further control for state and age fixed effects.
Standard errors are clustered at the state level. ***/**/* indicate statistical significance at the
1%/5%/10%-level. 38



Table 5: Effects of early life measles exposure on medium-term mortality
(ages 0–5)

(1) (2)
Dependent variable: Measles mortality Overall death rate

Panel A1: Epi. model and cohort trends
Share infected -0.007 -1.911∗

(0.013) (1.007)

R2 0.589 0.889
Panel A2: Epi. model and cohort fixed effects
Share infected -0.038∗∗ -3.036∗∗

(0.017) (1.384)

R2 0.626 0.901

Panel B1: RF model and cohort trends
Pre measles mort 0.028∗∗∗ 0.889∗

x Pre (0.010) (0.472)

R2 0.627 0.890
Panel B2: RF model and cohort fixed effects
Pre measles mort 0.038∗∗∗ 2.124∗∗∗

x Pre (0.014) (0.624)

R2 0.656 0.906

Panel C1: Epi.-RF Bartik and cohort trends
Pre measles mort 0.039∗ 1.418
x Share infected (0.020) (0.909)

R2 0.615 0.889
Panel C2: Epi.-RF Bartik and cohort fixed effects
Pre measles mort 0.032 1.321
x Share infected (0.022) (0.976)

R2 0.635 0.900
Observations 615 615
Mean dep. var .03499 26.81

Notes: Linear regressions in the sample including birth cohorts 1959–1973 aggregated to
cells at the state-of-birth x year-of-birth level and weighted by the cell’s birth counts.
Dependent variables are indicated in the top row. Explanatory variables are the share
infected derived from the epidemiological (Epi.) model in Panel A, the interaction of the
states’ measles mortality (ages 0—5, in 1959—1963) with a dummy equal to one for cohorts
born prior (<=) 1963 (year of measles vaccine introduction) for the reduced-form (RF)
model in Panel B, and a combination of both approaches for the Epi.-RF Bartik regression
in Panel C. Regressions in subpanels 1 include cohort trends (linear and quadratic terms)
and in subpanels 2 control for cohort fixed effects. All panels further control for state
and age fixed effects. Standard errors are clustered at the state level. ***/**/* indicate
statistical significance at the 1%/5%/10%-level.
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Appendix

Figure A1: Cumulative cases vs cumulative births, Oklahoma 1950–1960
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Notes: This figure shows the relationship of cumulative measles cases versus cumulative
births in the years 1950–1960 for Oklahoma. The inferred reporting rate for Oklahoma is
derived based on the slope of this relationship.
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Figure A4: Dynamic distribution model - sensitivity

Notes: This figure shows the share ever infected for two sample states, New York and
Texas, using the epidemiological approach described in Section 3.1 while varying input
parameters such as the initial susceptibility share (0.025 vs. 0.05) and different functional
forms to estimate the reporting rate.
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Figure A5: Sensitivity of epidemiological model
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-0.0423

-0.0368

-0.0488

-0.0421

-0.0351

-0.0472

-0.0405

-0.0349

-0.0470

-0.0403

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

 Model 1

 Model 2

 Model 3

 Model 4

 Model 5

 Model 6

 Model 7

 Model 8

 Model 9

 Model 10

 Model 11

 Model 12

-0.060 -0.040 -0.020

Cohort trends
Log HH income

0.0427

0.0489

0.0486

0.0423

0.0484

0.0481

0.0453

0.0512

0.0506

0.0449

0.0508

0.0501

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

share infected

 Model 1

 Model 2

 Model 3

 Model 4

 Model 5

 Model 6

 Model 7

 Model 8

 Model 9

 Model 10

 Model 11

 Model 12

0.020 0.040 0.060 0.080

Cohort fixed effects
Log HH income

1 S0 = 0.025; IRage = 1; reportingfunction = linear
2 S0 = 0.025; IRage = 1; reportingfunction = loess
3 S0 = 0.025; IRage = 1; reportingfunction = spline
4 S0 = 0.025; IRage = 2; reportingfunction = linear
5 S0 = 0.025; IRage = 2; reportingfunction = loess
6 S0 = 0.025; IRage = 2; reportingfunction = spline
7 S0 = 0.05; IRage = 1; reportingfunction = linear
8 S0 = 0.05; IRage = 1; reportingfunction = loess
9 S0 = 0.05; IRage = 1; reportingfunction = spline
10 S0 = 0.05; IRage = 2; reportingfunction = linear
11 S0 = 0.05; IRage = 2; reportingfunction = loess
12 S0 = 0.05; IRage = 2; reportingfunction = spline

Notes: Shown are the effects of the share ever infected on high school graduation rates and
log household income estimated using regression equation (7). The share ever infected is
calculated via the dynamic distribution model based on 12 versions of different alternative
parameter estimates. These versions are permutations of changes in the initial suscepti-
bility share (0.025 vs. 0.05), changes in the ratio of infection risk for the population below
and above age 6 (infection ratio 1 vs. 2), and different functional forms to estimate the
reporting rate.
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